В состав микротрубочек входит белок. Микрофиламенты. Чего пока не может эксперимент и как помогает теория

ЦИТОСКЕЛЕТ

Цитоскелет представляет собой сложную динамичную сиситему микротрубочек, микрофиламентов, промежуточных филаментов и микротрабекул. Указанные компоненты цитоскелета являются немембранными органеллами; каждый из них образует в клетке трехмерную сетъ с характерньм распределеием, которая взаимодействует с сетями из другах компонентов. Они входят также в состав ряда другах сложно организованных органелл (ресничек, жгутиков, микроворсинок клеточного центра) и клеточных соединений (десмосом, полудесмосом опоясывающих десмосом).

Основные функции цитоскелета:

1. поддержание и изменение формы клетки;

2. распределение и перемещение компонентов клетки;

3. транспорт веществ в клетку и из нее;

4. обеспечение подвижности клетки;

5. участие в межклеточных соединениях.

Микротрубочки – наиболее крупные компоненты цитоскелета. Они представляют собой полые цилиндрические образования, имеющие форму трубочек, длиной до нескольких микрометров (в жгутиках более 50 нм) диаметром около 24-25 нм, с толшиной стенки 5 нм и диаметром просвета 14-15 нм (рис. 3-14).

Рис. 3-14. Страение микротрубочки. 1 - мономеры тубулина, образующие протофиламенты, 2 - микротрубочка, 3 - пучок микротрубочек (МТ).

Стенка микротрубочки состоит из спиралевидно уложенных нитей – протофиламентов толшиной 5 нм (которым на поперечном разрезе соответствуют 13 субъединиц), образованных димерами из белковых молекул α- и β-тубулина.

Функции микротрубочек:

(1) поддержание формы и полярности клетки, распределения ее компонентов,

(2) обеспечение внутриклеточного транспорта,

(3) обеспечение движения ресничек, хромосом в митозе (формируют ахроматиновое веретено, необходимое для клеточного деления),

(4) образование основы других органелл (центриолей, ресничек).

Расположение микротрубочек. Микротрубочки располагаются в цитоплазме в составе нескольких систем:

а) в виде отдельных элементов, разбросанных по всей цитоплазме и формирующих сети;

б) в пучках, где они связаны тонкими поперечньми мостиками (в отростках нейронов, в составе митотического веретена, сперматиды, периферического "кольца" тромбоцитов);

в) частично сливаясь друг с другом с формированием пар, или блетов (в аксонеме ресничек и жгутиков), и триплетов (в базальном тельце и центриоли).

Образование и разрушение микротрубочек. Микротрубочки представляют собой лабильную систему, в которой имеется равновесие между их постоянной сборкой и диссоциацией. У большинства мики трубочек один конец (обозначаемый как «–» закреплен, а другой («+») свободен и участвует в их удлинении или деполимеризации. Структурами, обеспечивающими образование микротрубочек, служат особые мелкие сферические тельца - сателлиты (от англ. satellite – спутник), отчего последние называют центрами организации микротрубочек (ЦОМТ). Сателлиты содержатся в базальных тельцах ресничек и клеточном центре (см. рис. 3-15 и 3-16). После полного разрушения микротрубочек в цитоплазме они отрастают от клеточного центра со скоростью около 1 мкм/мин., а их сеть вновь восстанавливается менее, чем за полчаса. К ЦОМТ относят также и центромеры хромосом.



Убедительные опыты показали, что после инъекции меченых аминокислот вблизи тел клеток эти аминокислоты поглощаются телами и включаются в белок, который затем переносится по аксону к его окончаниям. В этих опытах установлены два общих типа аксонного транспорта: медленный транспорт, идущий со скоростью около 1 мм в сутки, и быстрый, идущий со скоростью нескольких сотен миллиметров в сутки. (ШЕППЕРД)

Связь микротрубочек с другими структурами клетки и межд боп осуществляется посредством ряда белков, выполняющих различные функции. (1) Микротрубочки с помощью вспомогательных белков креплены к другим клеточным компонентам. (2) По своей длине трубочки образуют многочисленные боковые выросты (которые состоят из белков, ассоциированных с микротрубочками) длиной до нескольких десятков нанометров. Благодаря тому, что такие белки последовательно и обратимо связываются с органеллами, транспортными пузырьками, секреторными гранулами и другами образованиями, микротрубочки (которые сами не обладают сократимостью) обеспечивают перемещение, указанных структур по цитоплазме . (3) Некоторые белки, ассоциированные с микротрубочками, стабилизируют их структуру, а связываясь с их свободными краями, препятствуют деполимеризации.

Угнетение самосборки микротрубочек посредством ряда веществ, являющихся ингибиторами митоза (колхицин, винбластин, винкристин), вызьшает избирательную гибель быстроделящихся клеток. Поэтому некоторые из таких веществ успешно используются для химиотерапии опухолей. Блокаторы микротрубочек нарушают также транспортные процессы в цитоплазме, в частности, секрецию, аксонный транспорт в нейронах. Разрушение микротрубочек приводит к изменениям формы клетки и дезорганизации ее структуры и распределения органелл.

Клеточный центр (цитоцентр)

Клеточный центр образован двумя полыми цилиндрическими структурами длиной 0.3-0.5 мкм и диаметром 0.15-0.2 мкм – центриоляии, которые располагаются вблизи друг друга во взаимно перпендикулярных плоскостях (рис. 3-15). Каждая центриоль состоит из 9 триплетов частично слившихся микротрубочек (А, В и С), связанных поперечными белковьши мостиками ("ручками"). В центральной части центриоли микротрубочки отсутствуют (по некоторым данным, здесь имеется особая центральная нить), что описывается общей формулой (9х3) + 0. Каждый триплет центриоли связан со сферическими тельцами диаметром 75 нм – сателлитами; расходящиеся от них микротрубочки образуют центросферу.

Рис. 3-15. Клеточный центр (1) и структура центриоли (2). Клеточный центр образован парой центриолей (Ц), расположенных во взаимно-перпендикулярных плоскостях. Каждая Ц состоит из 9 связанных друг с другом триплетов (ТР) микротрубочек (МТ). С каждым ТР посредством ножек связаны сателлиты (С) – глобулярные белковые тельца, от которых отходят МТ.

В неделящейся клетке выявляется одна пара центриолей (диплосома), Которая обычно располагается вблизи ядра. Перед делением в S-периоде интерфазы происходит дупликация центриолей пары, причем под прямым углом к каждой зрелой (материнской) центриоли формируется новая (дочерняя), незрелая процентриоль, в которой вначале имеются лишь 9 единичных микротрубочек, позднее превращающихся в триплеты. Пары центриолей далее расходятся к полюсам клетки, а во время митоза они служат центрами образования микротрубочек ахроматинового веретена деления.

Рис. 3-16. Ресничка. 1 - продольный срез, 2 - поперечный срез. БТ - базальное тельце (образовано триадами микротрубочек), ЦОМТ - центр организации микротрубочек, БК - базальный корешок, ПЛ - плазмолемма, МТА - микротрубочка А, МТВ - микротрубочка В, ПМТ - периферические микротрубочки, ЦМТ - центральные микротрубочки, ЦО - центральная оболочка, ДР - динеиновые ручки, РС - радиаль-ные спицы, НМ - нексиновые мостики.

Микро-трубочки располагаются, как правило, в самых глубоких слоях примембранного цитозоля. Поэтому периферические микротру-бочки надлежало бы рассматривать как часть динамичного, организующего микротрубочкового «скелета» клетки. Однако и сократимые, и скелетные фибриллярные структуры перифериче-ского цитозоля также связаны непосредственно с фибриллярны-ми структурами основной гиалоплазмы клетки. В функциональ-ном отношении периферическая опорно-сократимая фибрилляр-ная система клетки находится в теснейшем взаимодействии с системой периферических микротрубочек. Это дает нам основа-ние рассматривать последние как часть субмембранной системы клетки.

Система микротрубочек являет-ся вторым компонентом опорно-сократимого аппарата, находящаяся, как правило, в тес-ном контакте с микрофибриллярным компонентом. Стенки микро-трубочек образованы в попереч-нике чаще всего 13 димерными глобулами белка, каждая глобу-ла состоит из α- и β-тубулинов (рис. 6). Последние в большин-стве микротрубочек расположены в шахматном порядке. Тубулин составляет 80% белков содержа-щихся в микротрубочках. Ос-тальные 20% приходятся на до-лю высокомолекулярных белков МАР 1 , МАР 2 и низкомолекуляр-ного тау-фактора. МАР-белки (microtubule-associated proteins- белки, связанные с микротрубоч-ками) и тау-фактор представля-ют собой компоненты, необходи-мые для полимеризации тубулина. В их отсутствие самосборка микротрубочек путем полимери-зации тубулина крайне затруд-нена и образующиеся микротру-бочки сильно отличаются от на-тивных.

Микротрубочки — очень лабильная структура, так, микро-трубочки теплокровных животных, как правило, разрушаются на холоде. Существуют и холодоустойчивые микротрубочки, например в нейронах центральной нервной системы позвоноч-ных их количество варьирует от 40 до 60%. Термостабильные и термолабильные микротрубочки не различаются по свойствам входящего в их состав тубулина; по-видимому, эти отличия определяются добавочными белками. В нативных клет-ках по сравнению с микрофибриллами основная часть микротрубочковой субмем-бранной системы располага-ется в более глубоко лежа-щих участках цитоплазмы Материал с сайта

Так же как и микрофибриллы, микротрубочки под-вержены функциональной изменчивости. Для них ха-рактерны самосборка и саморазборка, причем раз-борка происходит до тубулиновых димеров. Соответ-ственно микротрубочки мо-гут быть представлены боль-шим или меньшим количе-ством в связи с преоблада-нием процессов либо саморазборки, либо самосборки микротрубочек из фонда гло-булярного тубулина гиало-плазмы. Интенсивные про-цессы самосборки микротру-бочек обычно приурочены к местам крепления клеток к субстрату, т. е. к местам усиленной полимеризации фибриллярного актина из глобулярного актина гиало-плазмы. Такая корреляция степени развития этих двух механохимических систем не случайна и отражает их глубокую функциональную взаимосвязь в целостной опорно-сократимой и транс-портной системе клетки.

Отдельную группу белков цитоскелета составляют белки микротрубочек. К ним относятся тубулин, белки, ассоциированные с микротрубочками (МАР 1, МАР 2, МАР 4, тау и др.) и белки - транслокаторы (динеин, кинезин, динамин). Микротрубочки – это белковые трубчатые структуры диаметром около 25 нм и длиной до нескольких десятков микрометров; толщина их стенок – около 6 нм. Они являются обязательным компонентом цитоплазмы эукариотических клеток. Микротрубочки образуют веретено деления (ахроматиновую фигуру) в митозе и в мейозе, аксонему (центральную структуру) подвижных ресничек и жгутиков, стенку центриолей и базальных телец. Микротрубочкам отводится важная, если не ключевая, роль в клеточном морфогенезе и в некоторых видах клеточной подвижности.

Стенки микротрубучек построены из белка тубулина, на долю которого приходится 90% по весу. Тубулин – это глобулярный белок, существующий в виде димера α- и β-субъединиц с молекулярной массой ~55 кДа. Микротрубочка имеет форму полого цилиндра, стенка которого состоит из линейных цепочек тубулиновых димеров, так называемых протофиламентов. В протофиламентах α- субъединица предыдущего димера соединена с β-субъединицей следующего. Димеры в соседних протофиламентах смещены друг относительно друга, образуя спиральные ряды. На попереченом срезе видно 13 димеров тубулина, что соответствует 13 протофиламентам в

стенке микротрубочки (рис. 9). Каждая субъединица содержит около 450 аминокислот и аминокислотные последовательности субъединиц гомологичны друг другу примерно на 40%. Тубулин – ГТФсвязывающий белок, причем β-субъединица содержит лабильно связанную молекулу ГТФ или ГДФ, способную обмениваться с ГТФ в растворе, а α-субъединица – прочно связанную молекулу ГТФ.

Рис. 9. Строение микротрубочки.

Тубулин способен к спонтанной полимеризации in vitro . Такая полимеризация возможна при физиологических температурах и благоприятных ионных условиях (отсутствие ионов Ca2+ ) и требует наличия двух факторов: высокой концентрации тубулина и присутствия ГТФ. Полимеризация сопровождается гидролизом ГТФ, и тубулин в составе микротрубочки остается связанным с ГДФ, а неорганический фосфат выходит в раствор.

Полимеризация тубулина состоит из двух фаз: нуклеации и элонгации. При нуклеации происходит формирование затравок, а при

элонгации – их удлинение с образованием микротрубочек. Следует отметить, что при полимеризации тубулина субъединицы добавляются только по концам микротрубочек.

Противоположные концы микротрубочек различаются по скоростям роста. Быстрорастущий конец принято называть плюсконцом, а медленнорастущий – минус-концом микротрубочки (см. рис. 9). В клетке (–)-концы микротрубочек, как правило, ассоциированы с центросомой, а (+)-концы направлены к периферии и нередко доходят до самого края клетки.

Микротрубочки подвержены динамической нестабильности.

При постоянном количестве полимера происходит спонтанный рост или укорочение отдельных микротрубочек вплоть до полного их исчезновения. Из-за запаздывания гидролиза ГТФ по отношению к встраиванию тубулина на конце микротрубочки, находящейся в процессе роста, формируется ГТФ-кэп, состоящий из 9-18 молекул ГТФ-тубулина. ГТФ-кэп стабилизирует конец микротрубочки и способствует ее дальнейшему росту. Если же скорость включения новых гетеродимеров оказывается меньше скорости гидролиза ГТФ или в случае механического разрыва микротрубочки, образуется конец, лишенный ГТФ-кэпа. Такой конец обладает пониженным сродством к новым молекулам тубулина; он начинает разбираться.

Полимеризацию и деполимеризацию микротрубочек индуцируют изменениями температуры, ионных условий или использованием специальных химических агентов. Среди веществ, вызывающих необратимую разборку, широко используются индольные алкалоиды (колхицин, винбластин, винкристин и др.).

БЕЛКИ, АССОЦИИРОВАННЫЕ С МИКРОТРУБОЧКАМИ

Белки, ассоциированные с микротрубочками, делятся на две группы: структурные МАР (microtubule-associated proteins) и белки-

транслокаторы.

Структурные МАР

Общим свойством структурных МАР является их перманентная ассоциация с микротрубочками. Еще одним общим свойством этой группы белков является то, что в отличие от белков-транслокаторов при взаимодействии с тубулином все они связываются с С-концевой частью молекулы размером около 4 кДа.

Различают высокомолекулярные МАР 1 и МАР 2, белки тау с молекулярной массой порядка 60-70 кДа и МАР 4 или МАР U с молекулярной массой около 200 кДа.

Так, молекула МАР 1В (представитель группы белков МАР 1) – это стехиометрический комплекс одной тяжелой и двух легких цепей, представляет собой вытянутую палочкообразную молекулу длиной 190 нм, имеющую на одном конце глобулярный домен диаметром 10 нм (по-видимому, участок связывания с микротрубочками); его молекулярная масса составляет 255.5 кДа.

МАР 2 – термостабильный белок. Он сохраняет способность взаимодействовать с микротрубочками и оставаться в их составе в нескольких циклах сборки-разборки после нагревания до 90о С.

Структурные МАР способны стимулировать инициацию и элонгацию и стабилизировать готовые микротрубочки; сшивать микротрубочки в пучки. В таком сшивании участвуют короткие α-

спиральные гидрофобные последовательности на N-конце МАР и тау, замыкающие молекулы МАР, сидящие на соседних микротрубочках, наподобие застежки «молния». Биологическая роль такого сшивания может состоять в стабилизации структур, образованных микротрубочками в клетке.

На сегодняшний день экспериментальными исследованиями установлено, что помимо регуляции динамики микротрубочек структурные МАР имеют еще две основные функции: клеточный морфогенез и участие во взаимодействии микротрубочек с другими внутриклеточными структурами.

Белки-транслокаторы

К отличительной особенности белков этой группы относится свойство преобразовывать энергию АТФ в механическое усилие, способное перемещать частицы вдоль микротрубочек или микротрубочки вдоль субстрата. Соответственно транслокаторы являются механохимическими АТФазами, и их АТФазная активность стимулируется микротрубочками. В отличие от структурных МАР, транслокаторы ассоциированы в микротрубочками только в момент АТФ-зависимого перемещения.

Белки-транслокаторы делятся на две группы: кинезиноподобные белки (опосредуют движение от (–)-конца к (+)-концу микротрубочек) и динеинопободные белки (движение от (+)-конца к (–)- концу микротрубочек) (рис. 10).

Кинезин представляет собой тетрамер двух легких (62 кДа) и двух тяжелых (120 кДа) полипептидных цепей. Молекула кинезина

имеет форму стержня диаметром 2-4 нм и длиной 80-100 нм с двумя глобулярными головками на одном конце и веерообразным расширением на другом (рис. 11).

Рис. 10. Белки-транслокаторы.

В середине стержня находится шарнирный участок. N-Концевой фрагмент тяжелой цепи размером около 50 кДа, обладающий механохимической активностью, называется моторным доменом кинезина.

Рис. 11. Строение молекулы кинезина.

Об авторах

Никита Борисович Гудимчук — кандидат физико-математических наук, старший научный сотрудник Центра теоретических проблем физико-химической фармакологии РАН и Детского центра гематологии, онкологии и иммунологии им. Дмитрия Рогачева. Область научных интересов — теоретическое и экспериментальное исследование механизмов деления клетки и динамики микротрубочек.

Павел Николаевич Захаров — младший научный сотрудник лаборатории биофизики Детского центра гематологии, онкологии и иммунологии. Занимается математическим моделированием митотического деления клетки.

Евгений Владимирович Ульянов — аспирант физического факультета Московского государственного университета им. М. В. Ломоносова. Область научных исследований — компьютерное моделирование динамики микротрубочек.

Фазоил Иноятович Атауллаханов — доктор биологических наук, профессор МГУ, директор Центра теоретических проблем физико-химической фармакологии, заведующий лабораторией биофизики Детского центра гематологии, онкологии и иммунологии. Научные интересы — клеточная биология, нелинейная динамика и самоорганизация в биологических системах.

Микротрубочки - один из трех основных типов белковых нитей клетки. Вместе с актиновыми и промежуточными филаментами они образуют клеточный каркас - цитоскелет. Благодаря своим уникальным механическим свойствам микротрубочки выполняют целый ряд ключевых функций на всех этапах жизни клетки, в том числе помогают организовать ее содержимое и служат «рельсами» для направленного транспорта внутриклеточных «грузов» - везикул и органелл. Микротрубочки - динамические структуры, они постоянно меняют свою длину за счет роста или укорачивания. Такое поведение, называемое динамической нестабильностью, существенно влияет на различные внутриклеточные процессы. Например, если клетка выпячивает часть цитоплазмы во время амебоидного движения, микротрубочки быстро заполняют новый объем, повышая в нем интенсивность внутриклеточного транспорта. Часть этих филаментов избирательно стабилизируется, тем самым задавая направление, вдоль которого перемещение «грузов» происходит более регулярно. Вдоль выделенной линии активизируются внутриклеточные процессы, а значит, создаются условия для возникновения у клетки полярности. Главенствующую роль динамика микротрубочек играет во время клеточного деления. Их способность менять длину интенсивно исследуется уже более 30 лет, однако механизмы, лежащие в основе этого феномена, все еще плохо изучены.

Строение и свойства микротрубочек

Микротрубочки - это линейные полимеры. Они построены из димеров белка тубулина, которые образуют 13 цепей - протофиламентов (рис. 1). Каждый из них по бокам связан с двумя другими, и вся конструкция замкнута в цилиндр диаметром 25 нм. Такое строение обеспечивает микротрубочке прочность и большую изгибную жесткость: она может оставаться почти абсолютно прямой в масштабе клетки. Чтобы представить, насколько микротрубочка сложно сгибаема, мысленно увеличим ее до размеров стержня диаметром спагетти (около 2 мм). Такая «спица» не прогибалась бы, будь она длиной даже в сотни метров (высота современных небоскребов)! Жесткость позволяет микротрубочкам выполнять роль длинных прямых направляющих, которые организуют движение органелл внутри клетки. Остальные элементы цитоскелета (актиновые и промежуточные филаменты) существенно более гибкие, поэтому, как правило, используются клеткой в других целях.

Димер тубулина, из которого строится микротрубочка, состоит из мономеров двух типов. Внутри каждого протофиламента α-мономеры одного димера соединяются с β-мономерами соседнего. Поэтому по всей длине микротрубочки, содержащей десятки и сотни тысяч димеров тубулина, все они ориентированы одинаково. Тот конец микротрубочки, к которому обращены α-тубулины, называется минус-концом, а противоположный - плюс-концом. Благодаря такому упорядоченному расположению димеров микротрубочка имеет полярность, что обеспечивает направленность транспорта. Моторные белки, которые участвуют в перемещении «грузов» из одной части клетки в другую, «шагают» по микротрубочке, перетаскивая свою «ношу» за собой, как правило, только в одном направлении. Например, белок динеин двигает органеллы к минус-концу микротрубочки, а кинезин - к плюс-концу. Часто микротрубочки расположены в клетке радиально, а их плюс-концы направлены к ее периферии. Таким образом, кинезины осуществляют транспортировку из центра к внешней мембране, а динеины - от нее внутрь клетки. Поразительно, но в отростках аксонов везикулы и органеллы могут направленно передвигаться по микротрубочкам на расстояния в сотни микрометров и больше.

Динамическая нестабильность: в клетках и в пробирке

От обычных биополимеров микротрубочки отличаются не только механическими свойствами, но и уникальным динамическим поведением (рис. 2). Обычный полимер растет монотонно до тех пор, пока скорость присоединения новых субъединиц из раствора не сравняется со скоростью отделения уже прикрепленных. Полимеризация же микротрубочки носит колебательный характер. Ее длина попеременно то увеличивается, то уменьшается при фиксированной концентрации димеров тубулина в растворе. В одних и тех же условиях сосуществуют растущие и укорачивающиеся микротрубочки. Переходы от стадии роста к укорочению называют катастрофами, а обратные - спасениями. Впервые такое поведение - динамическую нестабильность - обнаружили Т. Митчисон (T. Mitchison) и М. Киршнер (M. Kirschner) около 30 лет назад .

Динамическая нестабильность микротрубочек особенно важна во время митоза. Из них строится специальный аппарат для разделения клетки - веретено деления. Оно центрируется благодаря микротрубочкам, которые отталкиваются от клеточной мембраны. Далее, удлиняясь и укорачиваясь, они «обыскивают» пространство клетки в поисках хромосом. Отыскав их и закрепившись за них своими концами, микротрубочки развивают тянущие и толкающие силы, перемещая хромосомы к экватору клетки. Четко выстроив на нем генетический материал и тем самым обеспечив готовность клетки к разделению, микротрубочки растаскивают хромосомы к клеточным полюсам. Все это происходит благодаря динамической нестабильности микротрубочек. Незаменимая роль динамики микротрубочек в митозе привела к разработке лекарств от онкологических заболеваний. Так, например, низкомолекулярное вещество таксол - известный противоопухолевый препарат, стабилизирующий микротрубочки, а значит, останавливающий деление раковых клеток.

Нестабильность микротрубочек проявляется не только в клетках, но и в пробирке - в растворе образующего их белка. Следовательно, для проявления ими этого свойства не требуется ничего, кроме тубулина. Он присоединяется из раствора к концу микротрубочки во время фазы ее роста или, наоборот, отделяется и уходит обратно в раствор во время стадии укорачивания. Тем не менее, другие клеточные белки могут влиять на параметры динамической нестабильности, например, ускорять рост микротрубочек в клетках, менять (увеличивать или уменьшать) частоты катастроф и спасений. Известно, что в пробирке скорость роста микротрубочек и эти частоты многократно ниже, чем в клетках при той же концентрации тубулина.

Модель ГТФ-«шапочки»

Почему микротрубочки, в отличие от других биополимеров, динамически нестабильны? Рост микротрубочки, как сказано, происходит благодаря присоединению к ее концу димеров тубулина. Каждый мономер этого белка связан с молекулой гуанозинтрифосфата (ГТФ). Однако вскоре после присоединения тубулина к микротрубочке молекула ГТФ, связанная с β-субъединицей, гидролизуется до гуанозиндифосфата (ГДФ). ГТФ-димеры тубулина в составе протофиламента стремятся вытянуться, образовать линейную структуру, а ГДФ-димеры - изогнуться в рожок с радиусом кривизны около 20 нм. За счет постоянного присоединения ГТФ-димеров микротрубочка удлиняется, а на ее конце формируется «пояс» из молекул, еще не успевших гидролизовать ГТФ. Пытаясь выпрямиться, этот слой - ГТФ-«колпачок» (или «шапочка») - не дает выгнуться наружу нижележащим ГДФ-димерам и таким образом предохраняет растущий конец микротрубочки от разборки. Считается, что микротрубочка устойчиво растет и защищена от катастрофы, пока на ее конце есть ГТФ-«шапочка». Исчезновение последней в результате гидролиза или случайного отделения ГТФ-димеров тубулина переводит микротрубочку в фазу укорочения.

Модель ГТФ-«шапочки» появилась практически сразу после открытия динамической нестабильности и покорила исследователей своей простотой и элегантностью. Получено уже довольно много экспериментальных фактов, подтверждающих эту модель. Один из классических опытов, показывающих, что на конце микротрубочки есть некая стабилизирующая структура, заключается в следующем. Растущую микротрубочку перерезают микроиглой или сфокусированным пучком ультрафиолетового света [ , ]. Плюс-конец с отрезанной стороны немедленно начинает разбираться. Интересно, что минус-конец со стороны разреза обычно не разбирается, а продолжает расти. Р. Никлас (R. Nicklas) делал похожий опыт, но разрезал с помощью микроиглы микротрубочку в митотическом веретене внутри клетки . Как и в предыдущем случае, микротрубочка тут же разбиралась со стороны разреза на плюс-конце и оставалась стабильной на минус-конце. Поведение последнего до сих пор остается загадкой, но результаты этих экспериментов сочли сильным доводом, подтверждающим наличие на растущем плюс-конце микротрубочки стабилизирующей ГТФ-«шапочки».

Другой важный аргумент в пользу этой модели появился, когда создали химически модифицированный ГТФ - очень похожий на свой прообраз, но практически неспособный к гидролизу. Когда в растворе плавают только такие молекулы, микротрубочки хорошо растут, но никогда не испытывают катастрофы . Такое поведение подтверждает гипотезу о ГТФ-«шапочке»: ее слабогидролизуемый аналог никак не меняется со временем, а значит, не позволяет микротрубочке разбираться.

Косвенных доказательств существования ГТФ-«шапочки» много, однако ее до сих пор не удалось напрямую увидеть (хотя такие попытки предпринимались). По крайней мере, оценили размер минимальной структуры из слабогидролизуемого аналога ГТФ, которой достаточно, чтобы стабилизировать рост микротрубочки. Защитить ее от разборки, как оказалось, может «шапочка» всего в один слой димеров (при этом реально она может быть и толще). Наглядный способ оценить количество ГТФ-димеров на конце растущей микротрубочки - добавить белок с флуоресцентной меткой, который их распознает. Так называемый плюс-концевой белок EB1 in vitro светится на расстоянии порядка сотни слоев тубулина, причем интенсивность флуоресценции падает от конца к телу микротрубочки. Если этот белок действительно предпочитает связываться именно с ГТФ-димерами, то подобное распределение свечения указывает на то, что ГТФ-«шапочка» может быть значительно больше одного слоя. Примечательно, что белок ЕВ1 ярко окрашивает концы растущих микротрубочек, но начинает гаснуть за несколько секунд перед переходом филамента к катастрофе, как будто отражая постепенное исчезновение стабилизирующей ГТФ-«шапочки» . Измеренная интенсивность флуоресценции белка EB1 на концах микротрубочек в живых клетках также свидетельствует в пользу большой (существенно толще одного слоя тубулинов) ГТФ-«шапочки» . Кроме мечения микротрубочек белком EB1, «шапочку» также визуализировали в клетках с помощью специальных антител, узнающих ГТФ-тубулин . Интересно, что они связывались не только с концами микротрубочек, но и образовывали «островки» на остальной поверхности.

Микротрубочки стареют?

Модель ГТФ-«шапочки» привлекла внимание исследователей прежде всего потому, что позволила объяснить, почему микротрубочка может устойчиво расти и укорачиваться и почему между этими фазами возможны переходы - катастрофы и спасения.

В 1995 г. Д. Одде (D. Odde) с соавторами провел простой, но важный эксперимент . Они наблюдали за ростом микротрубочек в пробирке и решили построить распределение их длин. Оно предполагалось экспоненциальным, но оказалось, что у него есть пик (рис. 3). Значит, в начале роста микротрубочки имеют очень маленькую вероятность испытать катастрофу, а дальше, по мере их роста, эта вероятность повышается. Если пересчитать распределение длин микротрубочек в частоты катастроф, то получится возрастающая зависимость частоты катастроф от времени. Этот эффект назвали «старением» микротрубочек - они как будто «портятся» со временем. Иначе говоря, «молодые» микротрубочки могут расти стабильно, а «старые» уже более склонны к разборке. Необычное распределение времен жизни микротрубочек хорошо аппроксимируется гамма-распределением, которое характеризует процессы с фиксированным количеством последовательных шагов. Поэтому возникла идея, что лучше всего результаты проведенного эксперимента описывает теория, согласно которой катастрофа микротрубочки происходит за три последовательных стадии, когда в ней накопились определенные дефекты неизвестной природы . Эта гипотеза, исходно достаточно сомнительная, тем не менее существенно подогрела интерес к исследованию динамики микротрубочек на уровне отдельных димеров тубулина.

Чего пока не может эксперимент и как помогает теория?

Обнаруженный феномен «старения» микротрубочек показал, что общепринятая, ставшая классической, модель ГТФ-«шапочки» - некоторое упрощение. Действительно, она только постулирует, что микротрубочка испытывает катастрофу, когда теряет свой стабилизирующий «колпачок», но не объясняет, как и почему это происходит, а также из-за чего же вообще микротрубочка может «стареть». Что за таинственные дефекты накапливаются внутри «стареющей» микротрубочки, приводя ее к катастрофе? Сколько их и в какой последовательности они должны проявляться? Может быть, речь идет о гидролизе отдельных молекул ГТФ внутри «шапочки» или о каком-то другом процессе, зависящем от не установленных пока событий совсем иной природы?

Естественно, исследователи хотели бы как можно тщательнее разглядеть «живые» микротрубочки, чтобы ответить на эти вопросы. Однако современный экспериментальный арсенал не позволяет это сделать. Мы можем или увидеть замороженную (обездвиженную) микротрубочку с нанометровым разрешением, например, с помощью электронного микроскопа, или проследить динамику микротрубочки со скоростью сотни кадров в секунду под оптическим микроскопом. К сожалению, невозможно получить соответствующие данные одновременно, чтобы четко их соотнести. Во многом по вине таких ограничений современной науке неизвестно, каков точный размер ГТФ-«шапочки» и как он меняется со временем, а также какую форму имеют концы микротрубочек и как она определяет их динамику.

На помощь экспериментам приходят теоретические методы исследования, в частности компьютерное моделирование. Оно может воссоздать микротрубочку с очень высоким пространственно-временным разрешением, правда, ценой неизбежных идеализаций и упрощений, адекватность которых нужно тщательно проверять (сравнивая результаты модельного и настоящего экспериментов). Идеальная компьютерная модель должна описывать все имеющиеся экспериментальные данные. Тогда на ее основе можно будет изучить механизмы наблюдаемого поведения микротрубочек и предсказать принцип действия белков, влияющих на динамику этих филаментов в клетках. Также станет возможным подбор химических соединений для управления поведением микротрубочек в медицинских целях.

На сегодняшний день создано множество моделей микротрубочек - от очень простых до весьма сложных. Самыми лучшими оказались наиболее детальные модели - молекулярные, которые учитывают, что микротрубочка состоит из многих протофиламентов и что ее структура дискретна (совокупность отдельных субъединиц - тубулинов). Первые такие модели стали появляться почти сразу после обнаружения динамической нестабильности в 1984 г. Работая с ансамблем взаимодействующих тубулинов, они воссоздают поведение микротрубочки как целого. Со времен первых молекулярных моделей накопилось много новых экспериментальных данных о микротрубочках. С тех пор уточнили их строение, измерили новые зависимости характеристик роста и укорочения от различных параметров, изучили поведение этих филаментов после разбавления тубулина, оценили размер ГТФ-«шапочки», открыли способность концов микротрубочек развивать тянущие и толкающие силы [11–19 ] . Это позволяло корректировать расчеты и все точнее задавать параметры взаимодействия тубулинов. Однако росли и требования к моделям, поскольку они должны непротиворечиво описывать весь набор имеющихся экспериментальных результатов. Таким образом, способы описания взаимодействия тубулинов совершенствовались и усложнялись. От простых моделей, где субъединицы либо взаимодействуют друг с другом, либо нет, перешли к так называемым молекулярно-механическим (самым современным и наиболее реалистичным). Они рассматривают молекулы тубулина как физические объекты, подчиняющиеся законам механики и движущиеся в поле тепловых соударений и потенциалов притяжения друг к другу [20–22 ] . В ранних молекулярно-механических расчетах динамики микротрубочек из-за ограниченной производительности компьютеров нельзя было подробно описать взаимодействие тубулинов на основе уравнений движения и с учетом тепловых колебаний. Однако эта цель оставалась очень притягательной для нашей команды, поскольку мы предполагали, что тепловые флуктуации играют существенную роль в динамике микротрубочек.

Новая молекулярно-механическая модель

Ускорения расчетов нам удалось достичь главным образом за счет технологии параллельных вычислений на крупнейшем суперкомпьютере «Ломоносов» (в вычислительном центре МГУ) . Он способен производить 1,7·10 15 операций в секунду, что выводит его на первое место в Восточной Европе по производительности.

В рамках нашей новой модели субъединицы тубулина - это шарики, на поверхности которых размещены центры взаимодействий с «соседями» (рис. 4). Рассматриваются два типа взаимодействий - продольные и боковые. Сами шарики могут существовать в двух состояниях, соответствующих ГТФ- и ГДФ-формам. В первом случае центры шариков стремятся выстроиться вдоль прямой, а во втором - вдоль дуги, соответствующей углу 22° (для каждой пары субъединиц). Центры взаимодействия притягиваются на близких расстояниях и перестают «чувствовать» друг друга на больших. Движения шариков описываются уравнениями Ланжевена (следствиями второго закона Ньютона), в которых мы пренебрегаем членами, содержащими ускорения частиц (так как эти слагаемые малы по сравнению с остальными). Субъединицы тубулина, удалившиеся от микротрубочки на расстояние, где они перестают с ней взаимодействовать, исключаются из рассмотрения. Также в систему периодически с некоторой вероятностью вводятся новые ГТФ-тубулины, которые появляются в случайной позиции на конце микротрубочки. Внутри нее они могут с определенной вероятностью подвергаться гидролизу - превращаться в ГДФ-субъединицы, которые тут же хотят расположиться по дуге, т. е. сформировать изогнутый протофиламент. Но последний необязательно сразу изгибается, так как от этого его могут удерживать боковые связи. Полученная таким образом система взаимодействующих тубулинов эволюционирует во времени: микротрубочка растет, испытывает катастрофу, укорачивается, спасается и вновь удлиняется. При этом наша модель хорошо описывает характерные формы концов растущей и укорачивающейся микротрубочек, воспроизводит наблюдаемые в экспериментах зависимости динамических характеристик от концентрации тубулина в растворе, а также феномен «старения» микротрубочек. Итак, с помощью моделирования, исходя из простых и понятных принципов и без каких-либо экзотических допущений, мы получили на экране компьютера виртуальную микротрубочку - объект, обладающий всеми основными свойствами своего реального прототипа. Рассчитав координаты всех субъединиц микротрубочки, мы можем с беспрецедентными разрешением и достоверностью узнать все о каждом элементе модельной микротрубочки в любой момент времени. Остается только проанализировать сложную последовательность событий в жизни микротрубочки и понять, какие из них и как приводят ее к переключению от роста к укорачиванию.

Что же происходит с микротрубочкой перед катастрофой? Сначала мы выяснили, выполняется ли в нашей модели какой-либо из двух ранее предложенных гипотетических сценариев этого события. Согласно одному из них, в структуре микротрубочки по мере ее роста могут возникать и сохраняться дефекты, например «дырки» в стенке, возникающие из-за того, что один из протофиламентов замедляет или прекращает свой рост (рис. 5, а ) . В нашей модели нет никаких искусственно вложенных оснований для приостановки роста отдельных протофиламентов. Поэтому такая ситуация практически никогда не реализуется, а следовательно, не может быть объяснением механизма «старения» микротрубочек и возникновения катастроф. Вторая гипотеза гласит, что увеличение склонности микротрубочки испытывать катастрофы («старение») происходит по мере постепенного заострения ее конца (рис. 5, б ) . Мы тщательно изучили разброс длин у протофиламентов микротрубочки в нашей модели и выяснили, что он быстро достигает некоей устойчивой формы, после чего микротрубочка остается с этим уровнем заостренности. Даже если искусственно создать конфигурацию микротрубочки с концом, в котором длины отдельных протофиламентов будут сильно различаться, то довольно скоро растущая белковая нить, предоставленная сама себе, достигнет все того же устойчивого уровня заостренности, к которому она обычно стремится. Таким образом, медленное заострение конца растущей микротрубочки тоже не может объяснить феномен ее «старения» в нашей модели. Мы также обратили внимание, что и размер ГТФ-«шапочки» не имеет тенденции постепенно уменьшаться (хотя существенно колеблется во время роста микротрубочки), а значит, он не может быть причиной катастрофы.

Отсутствие явного кандидата на медленный необратимый дестабилизирующий процесс привело нас к мысли, что, возможно, его и вовсе нет. А катастрофа происходит не в результате медленного накопления каких-либо дефектов, а из-за возникновения множества короткоживущих обратимых событий. Они время от времени накапливаются на конце микротрубочки и тогда приводят ее к катастрофе (рис. 5, в ). Наиболее вероятное событие, приводящее к дестабилизации микротрубочки, - возникновение изогнутого «рожка» на ее конце. Действительно, если протофиламент отогнулся, то даже в случае присоединения к его концу новых субъединиц тубулина из раствора микротрубочка не становится более стабильной и продолжает укорачиваться. Однако один изогнутый протофиламент может легко обломиться и отделиться от микротрубочки. Поэтому по-настоящему дестабилизирующий эффект будут оказывать только несколько изогнутых протофиламентов, образовавшихся на конце микротрубочки одновременно. Количество непрямых протофиламентов, возникающих незадолго до катастрофы в наших расчетах, подтверждает этот вывод.

Таким образом, компьютерное моделирование позволило пролить свет на механизм возникновения катастроф. Оказалось, что в этом процессе важную роль играет не только число ГТФ-димеров, но и механические конфигурации протофиламентов. Катастрофа - результат единовременного образования множества обратимых короткоживущих событий (изогнутых протофиламентов) на конце микротрубочки. Это дополняет классическую модель ГТФ-«шапочки» недостающими деталями, объясняя, как и почему может происходить катастрофа микротрубочки. Мы надеемся, что компьютерное моделирование со временем позволит ответить и на другие вопросы о динамике этих филаментов. Каков механизм спасения микротрубочек? Почему их плюс- и минус-концы в экспериментах по перерезанию пучком ультрафиолетового света или микроиглой ведут себя по-разному? Как белки-модуляторы и потенциальные лекарства воздействуют на динамику микротрубочек?

Клеточная или цитоплазматическая мембрана окружает каждую клетку. Ядро окружено двумя ядерными мембранами: наружной и внутренней . Все внутриклеточные структуры: митохондрии, эндоплазматический ретикулум, аппарат Гольджи, лизосомы, пероксисомы, фагосомы, синаптосомы и т.д. представляют собой замкнутые мембранные везикулы (пузырьки ). Каждый тип мембран содержит специфический набор белков – рецепторов и ферментов; вместе с тем основа любой мембраны – бимолекулярный слой липидов (липидный бислой), который во всякой мембране выполняет две главные функции:

  • барьера для ионов и молекул,
  • структурной основы (матрицы) для функционирования рецепторов и ферментов.

Микротрубочки - белковые внутриклеточные структуры, входящие в состав цитоскелета.

Микротрубочки представляют собой полые цилиндры диаметром 25 нм. Длина их может быть от нескольких микрометров до, вероятно, нескольких миллиметров в аксонах нервных клеток. Их стенка образована димерами тубулина. Микротрубочки полярны: на одном конце происходит самосборка микротрубочки, на другом - разборка. В клетках микротрубочки играют роль структурных во многих клеточных процессах.

Микротрубочки - это структуры, в которых 13 протофиламентов, состоящих из гетеродимеров α- и β-тубулина, уложены по окружности полого цилиндра. Внешний диаметр цилиндра около 25 нм, внутренний - около 15.

Один из концов микротрубочки, называемый плюс-концом , постоянно присоединяет к себе свободный тубулин. От противоположного конца - минус-конца - тубулиновые единицы отщепляются.

В образовании микротрубочки выделяют три фазы:

Замедленная фаза, или нуклеация . Это этап зарождения микротрубочки, когда молекулы тубулина начинают соединяться в более крупные образования. Такое соединение происходит медленнее, чем присоединение тубулина к уже собранной микротрубочке, поэтому фаза и называется замедленной.

Фаза полимеризации, или элонгация . Если концентрация свободного тубулина высока, его полимеризация происходит быстрее, чем деполимеризация на минус-конце, за счёт чего микротрубочка удлиняется. По мере её роста концентрация тубулина падает до критической, и скорость роста замедляется вплоть до вступления в следующую фазу.

Фаза стабильного состояния . Деполимеризация уравновешивает полимеризацию, и рост микротрубочки останавливается.

Микротрубочки являются динамическими структурами и в клетке постоянно полимеризуются и деполимеризуются. Центросома, локализованная вблизи ядра, выступает в клетках животных и многих протистов как центр организации микротрубочек (ЦОМТ): они растут от неё к периферии клетки . В то же время микротрубочки могут внезапно прекратить свой рост и укоротиться обратно по направлению к центросоме вплоть до полного разрушения, а затем вырасти снова.

Динамическая нестабильность микротрубочек играет важную физиологическую роль. Например, при делении клетки микротрубочки растут очень быстро и способствуют правильной ориентации хромосом и образованию митотического веретена.

Функция . Микротрубочки в клетке используются в качестве «рельсов» для транспортировки частиц. По их поверхности могут перемещаться мембранные пузырьки и митохондрии. Транспортировку по микротрубочкам осуществляют белки, называемые моторными . Это высокомолекулярные соединения, состоящие из двух тяжёлых (массой около 300 кДа) и нескольких лёгких цепей. В тяжёлых цепях выделяют головной и хвостовой домены . Два головных домена связываются с микротрубочками и являются собственно двигателями, а хвостовые - связываются с органеллами и другими внутриклеточными образованиями, подлежащими транспортировке.

Выделяют два вида моторных белков:

  • цитоплазматические динеины;
  • кинезины.

Динеины перемещают груз только от плюс-конца к минус-концу микротрубочки, то есть из периферийных областей клетки к центросоме. Кинезины , напротив, перемещаются к плюс-концу, то есть к клеточной периферии.

Перемещение осуществляется за счёт энергии АТФ. Головные домены моторных белков для этого содержат АТФ-связывающие участки.

Помимо транспортной функции, микротрубочки формируют центральную структуру ресничек и жгутиков - аксонему. Типичная аксонема содержит 9 пар объединённых микротрубочек по периферии и две полных микротрубочки в центре.

Из микротрубочек состоят также центриоли и веретено деления, обеспечивающее расхождение хромосом к полюсам клетки при митозе и мейозе . Микротрубочки участвуют в поддержании формы клетки и расположения органоидов (в частности, аппарата Гольджи) в цитоплазме клеток.

Микротрубочки растений являются высокодинамическими составляющими цитоскелета, которые вовлечены в важные клеточные процессы, в частности, сегрегацию хромосом, формирование фрагмопласта, микрокомпартментализацию, внутриклеточный транспорт, а также в поддержание постоянной формы и полярности клетки. Ядро. Строение и функции ядра.