Химическая ферментация. Окисление и ферментация в производстве чая. Чай полной ферментации

Биополимеры


Общие сведения
Существует два основных типа биополимеров: полимеры, происходящие из живых организмов, и полимеры, происходящие из возобновляемых ресурсов, но требующие полимеризации. Оба типа используются для производства биопластиков. Биополимеры, присутствующие в живых организмах, или создаваемые ими, содержат углеводороды и протеины (белки). Они могут применяться в производстве пластмасс для коммерческих целей. В качестве примеров можно привести:

Биополимеры, существующие/создаваемые в живых организмах

Биополимер

Естественный источник Характеристика
Полиэфиры Бактерии Такие полиэфиры получаются путем естественных химических реакций, производимых определенными видами бактерий.
Крахмал Зерно, картофель, пшеница и др. Такой полимер - один из способов хранения углеводородов в растительных тканях. Он состоит из глюкозы. В тканях животных он отсутствует.
Целлюлоза Древесина, хлопок, зерно, пшеница и др. Этот полимер состоит из глюкозы. Он является основным компонентом оболочки клетки.
Соевый белок Соевые бобы Протеин, содержащийся в соевых растениях.

Молекулы из возобновляемых природных ресурсов могут быть полимеризованы для использования при производстве биоразлагаемых пластиков.

Ест ественные источники, полимеризуемые в пластмассы

Биополимер

Естетсвенный источник Характеристика
Молочная кислота Свекла, зерно, картофель и др. Производится путем ферментации исходных продуктов, содержащих сахар, например, свеклы, и переработки крахмала зерновых культур, картофеля или других источников крахмала. Полимеризуется для получения полимолочной кислоты, полимера, который применяется в производстве пластмасс.
Триглицериды Растительные масла Формируют большинство липидов, входящих в состав всех растительных и животных клеток. Растительные масла - один из возможных источников триглицеридов, которые могут быть полимеризованы в пластики.

Для производства пластмассовых материалов из растений применяются два метода. Первый метод основан на ферментации, а второй использует для производства пластика само растение.

Ферментация
Процесс ферментации задействует микроорганизмы для разложения органических веществ в отсутствии кислорода. Современные общепринятые процессы используют микроорганизмы, созданные методами генетической инженерии, специально предназначенные для условий, при которых происходит ферментация, и вещество, разлагаемое микроорганизмом. В настоящее время для создания биополимеров и биопластиков существует два подхода:
- Бактериальная полиэфирная ферментация: В ферментации задействованы бактерии ralstonia eutropha, которые используют сахар собранных растений, например, зерна, для питания собственных клеточных процессов. Побочным продуктом таких процессов является полиэфирный биополимер, впоследствии извлекаемый из бактериальных клеток.
- Ферментация молочной кислоты: Молочная кислота получается методом ферментации из сахара, во многом схожим с процессом, применяемым для прямого производства полиэфирных полимеров с участием бактерий. Однако в данном процессе ферментации побочным продуктом является молочная кислота, которая затем обрабатывается традиционным способом полимеризации для изготовления полимолочной кислоты (PLA).

Пластики из растений
Растения обладают большим потенциалом, чтобы стать фабриками по производству пластмасс. Этот потенциал можно максимально реализовать при помощи геномики. Полученные гены можно вводить в зерно, применяя технологии, позволяющие разрабатывать новые пластиковые материалы с уникальными свойствами. Такая генная инженерия дала ученым возможность создать растение Arabidopsis thaliana. Оно содержит ферменты, которые бактерии используют для производства пластиков. Бактерия создает пластик путем превращения солнечного света в энергию. Ученые перенесли ген, кодирующий этот фермент, в растение, обеспечив возможность производства пластика в клеточных процессах этого растения. После сбора урожая пластик выделяется из растения при помощи растворителя. Получающаяся в результате этого процесса жидкость подвергается дистилляции для отделения растворителя от полученного пластика.

Рынок биополимеров


Сокращение разрыва между синтетическими полимерами и биополимерами
Около 99% всех пластмасс производится или получается из основных невозобновляемых источников энергии, включая природный газ, нафту, сырую нефть, уголь, которые используются в производстве пластиков и в качестве исходных материалов, и как источник энергии. В какой-то период сельскохозяйственные материалы считались альтернативным исходным сырьем для производства пластмасс, но уже более десяти лет они не оправдывают ожиданий разработчиков. Основным препятствием для использования пластиков, изготовленных на основе сельскохозяйственного сырья, стала их себестоимость и ограниченные функциональные возможности (чувствительность продуктов из крахмала к влаге, ломкость полиоксибутирата), а также недостаточная гибкость при производстве специализированных пластиковых материалов.


Прогнозируемые эмиссии CO2

Совокупность различных факторов, взлет цен на нефть, повышение интереса во всем мире к возобновляемым ресурсам, рост обеспокоенности в связи с выбросами парниковых газов, особое внимание к утилизации отходов возродили заинтересованность в биополимерах и эффективных способах их производства. Новые технологии выращивания и переработки растений позволяют сократить разницу в стоимости между биопластиками и синтетическими пластмассами, а также усовершенствовать свойства материалов (например, Biomer ведет разработку видов PHB (полигидрокибутират) с повышенной прочностью расплава для пленки, получаемой экструзией). Растущая озабоченность экологическими проблемами и стимулирование на законодательном уровне, в частности, на территории Евросоюза, возбудили интерес к биоразалагающимся пластикам. Реализация принципов Киотского протокола также заставляет обратить особое внимание на сравнительную эффективность биополимеров и синтетических материалов с точки зрения энергозатрат и выбросов CO2. (В соответствии с Киотским протоколом Европейское Сообщество обязуется за период 2008-2012 гг. снизить поступление парниковых газов в атмосферу по сравнению с уровнем 1990 г. на 8%, а Япония обязуется сократить такие выбросы на 6%).
По приблизительным подсчетам пластики на основе крахмала могут сэкономить от 0,8 до 3,2 тонн CO2 на тонну по сравнению с тонной пластмассы, полученной из органического топлива, при этом данный диапазон отражает долю сополимеров на основе нефти, используемых в пластиках. В отношении альтернативных пластиков на основе масляных зерен экономия выбросов парниковых газов в эквиваленте CO2 оценивается в размере 1,5 тонн на тонну полиола, изготовленного из рапсового масла.

Мировой рынок биололимеров
В течение следующих десяти лет ожидается продолжение быстрого роста глобального рынка пластиковых материалов, наблюдающегося в течение последних пятидесяти лет. По прогнозам, сегодняшнее потребление пластмасс на душу населения в мире увеличится с 24,5 кг до 37 кг в 2010 г. Такой рост определяется, прежде всего, США, странами Западной Европы и Японией, однако, ожидается активное участие стран Юго-Восточной и Восточной Азии и Индии, которые в течение указанного периода должны составить около 40% мирового рынка потребления пластмасс. Также ожидается увеличение мирового потребления пластмасс с 180 миллионов тонн сегодня до 258 миллионов тонн в 2010 году, при этом существенное развитие получат все категории полимеров, так как пластики продолжают вытеснять традиционные материалы, включая сталь, дерево и стекло. По некоторым экспертным оценкам за этот период биопластикам удастся прочно занять от 1,5% до 4,8% общего рынка пластмасс, что в количественном отношении составит от 4 до 12,5 миллионов тонн в зависимости от технологического уровня разработок и исследований в области новых биопластиковых полимеров. По мнению руководства компании Toyota, к 2020 году пятая часть мирового рынка пластмасс будет занята биопластиками, что эквивалентно 30 миллионам тонн.

Маркетинговые стратегии биополимеров
Разработка, уточнение и применение эффективной маркетинговой стратегии является самым важным этапом для любой компании, планирующей вложение значительных средств в биополимеры. Несмотря на гарантированное развитие и рост биополимерной промышленности, существуют определенные факторы, которые нельзя не учитывать. Следующие вопросы определяют маркетинговые стратегии биополимеров, их производства и научно-исследовательской деятельности в этой области:
- Выбор сегмента рынка (упаковка, сельское хозяйство, автомобильная промышленность, строительство, целевые рынки). Усовершенствованные технологии обработки биополимеров обеспечивают более эффективное управление макромолекулярными структурами, что позволяет новым поколениям «потребительских» полимеров конкурировать с более дорогими «специализированными» полимерами. Кроме того, при наличии новых катализаторов и усовершенствованной системы управления процессом полимеризации появляется новое поколение специализированных полимеров, созданных для функциональных и структурных целей и генерирующих новые рынки. Примерами могут стать биомедицинские виды применения имплантатов в стоматологии и хирургии, которые быстро наращивают темпы своего развития.
- Базовые технологии: технологии ферментации, растениеводство, молекулярная наука, производство сырья для исходных материалов, источников энергии или того и другого, использование генетически измененных или неизмененных организмов в процессе ферментации и производства биомассы.
- Уровень поддержки со стороны государственной политики и законодательной среды в целом: переработанные пластики в определенной степени составляют конкуренцию биоразлагаемым полимерам. Правительственные постановления и законодательные акты, относящиеся к окружающей среде и переработке отходов, могут оказать положительное влияние на увеличение продаж пластиков для различных полимеров. Выполнение обязательств Киотского протокола, вероятно, повысит спрос на определенные материалы на биологической основе.
- Развитие цепи поставок в фрагментированной индустрии биополимеров и коммерческий эффект от экономии за счет масштаба в сравнении с усовершенствованием свойств продукции, при котором она может быть реализована по повышенным ценам.

Биоразлагаемые полимеры и полимеры на основе, не содержащей нефти


Пластмассы с низким уровнем воздействия на окружающую среду
На рынке существует три группы биоразлагаемых полимеров. Это PHA (фитогемагглютинин) или PHB, полилактиды (PLA) и полимеры на основе крахмала. Другими материалами, имеющими коммерческое применение в области биоразлагаемых пластиков, являются лигнин, целлюлоза, поливиниловый алкоголь, поли-е-капролактон. Существует немало производителей, выпускающих смеси биоразлагаемых материалов, либо для улучшения свойств этих материалов, либо для сокращения производственных затрат.
Для совершенствования технологических параметров и повышения ударной вязкости PHB и его сополимеры смешиваются с целым рядом полимеров с различными характеристиками: биоразлагаемыми или неразлагаемыми, аморфными или кристаллическими с разной температурой расплава и стеклования. Смеси также используются для улучшения свойств PLA. Обычные PLA во многом ведут себя так же, как полистиролы, проявляя ломкость и низкое удлинение на разрыв. Но, например, добавка 10-15% Eastar Bio, биоразлагаемого нефтепродукта на основе полиэстера производства компании Novamont (в прошлом, Eastman Chemical), значительно повышает вязкость и, соответственно, модуль упругости при изгибе, а также ударную вязкость. Для улучшения биоразлагаемости при одновременном снижении себестоимости и сохранении ресурсов возможно смешивание полимерных материалов с природными продуктами, например, крахмалами. Крахмал представляет собой полукристаллический полимер, состоящий из амилазы и амилопектина с различными коэффициентами в зависимости от растительного сырья. Крахмал растворяется в воде, а использование агентов, улучшающих совместимость, может иметь принципиальное значение для успешного смешивания этого материала с гидрофобными полимерами, несовместимыми при других условиях.

Сравнение свойств биопластиков с традиционными пластиками

Сравнение PLA и пластиков на основе крахмала с традиционными пластиками на основе нефтепродуктов

Свойства (единицы) LDPE PP PLA PLA Крахмальная основа Крахмальная основа
Удельный вес (г/см 2) <0.920 0.910 1.25 1.21 1.33 1.12
Прочность при растяжении (МПа) 10 30 53 48 26 30
Предел текучести при растяжении (МПа) - 30 60 - 12
Модуль упругости при растяжении (ГПа) 0.32 1.51 3.5 - 2.1-2.5 0.371
Удлинение при растяжении (%) 400 150 6.0 2.5 27 886
Прочность по Изоду с надрезом (Дж/м) No break 4 0.33 0.16 - -
Модуль при изгибе (ГПа) 0.2 1.5 3.8 1.7 0.18

Свойства PHB по сравнению с традиционными пластиками

Свойства Biomer PHB в сравнении с PP , PS и PE

Прочность при растяжении Удлинение на разрыв Шор A Модуль
Biomer P226 18 - 730
15-20 600 150-450
Biomer L9000 70 2.5 3600
PS 30-50 2-4 3100-3500

С точки зрения сравнительной стоимости, существующие пластики на нефтяной основе являются менее дорогостоящими, чем биопластики. Например, цена на промышленные и медицинские сорта полиэтилена высокой плотности (ПЭВП - HDPE), также применяемого при производстве упаковки и потребительских товаров, варьируется от 0,65 до 0,75 долларов за фунт. Цена на полиэтилен низкой плотности (ПЭНП - LDPE) составляет 0,75-0,85 долларов за фунт. Полистиролы (PS) стоят от 0,65 до 0,85 долларов за фунт, полипропилены (PP), в среднем, - 0,75-0,95 долларов за фунт, а полиэтилентерефталаты (PET) - от 0,90 до 1,25 долларов за фунт. По сравнению с ними, полилактидные пластики (PLA) стоят в пределах 1,75-3,75 долларов за фунт, поликапролактоны (PCL), полученные из крахмала, - 2,75-3,50 долларов за фунт, полиоксибутираты (PHB) - 4,75-7,50 долларов за фунт. В настоящее время, учитывая сравнительные общие цены, биопластики дороже традиционных распространенных пластиков на основе нефти в 2,5 - 7,5 раза. Однако еще пять лет назад их стоимость в 35-100 раз превышала существующие невозобновляемые эквиваленты на основе органического топлива.

Полилактиды (PLA)
PLA представляет собой биоразлагаемый термопластик, полученный из молочной кислоты. Он обладает водостойскостью, но не может переносить высоких температур (>55°C). Поскольку он не растворяется в воде, микробы в морской среде могут так же разлагать его на CO2 и воду. Пластик имеет сходство с чистым полистиролом, обладает хорошими эстетическими качествами (глянец и прозрачность), но является слишком жестким и хрупким и нуждается в модификации для большинства практических применений (т.е. его эластичность увеличивается пластификаторами). Как и большинство термопластов, его можно перерабатывать в волокна, пленки, изготовленные горячим формованием или литьем под давлением.


Структура полилактида

В процессе производства зерно обычно сначала перемалывается для получения крахмала. Затем путем переработки крахмала получают неочищенную декстрозу, которая при ферментации превращается в молочную кислоту. Молочная кислота сгущается для производства лактида, циклического промежуточного димера, который применяется как мономер для биополимеров. Лактид проходит очистку путем вакуумной дистилляции. После этого в процессе расплава без растворителя открывается кольцевая структура для полимеризации - таким образом, получается полимер полимолочной кислоты.


Модуль упругости при растяжении


Прочность по Изоду с надрезом


Модуль при изгибе


Удлинение при растяжении

Компания NatureWorks, дочернее предприятие Cargill, крупнейшей частной компании в США, производит полилактидный полимер (PLA) из возобновляемых ресурсов с использованием собственной технологии. В результате 10 лет исследований и разработок на базе компании NatureWorks и 750 миллионной инвестиции, в 2002 году было создано совместное предприятие Cargill Dow (теперь дочернее предприятие NatureWorks LLC, полностью принадлежащее компании Cargill) с годовой производительностью 140000 тонн. Полилактиды, полученные из зерна и реализуемые под торговой маркой NatureWorks PLA и Ingeo, в основном находят свое применение в термоупаковке, экструдированных пленках и волокнах. Компания также разрабатывает технические возможности производства продукции литьевым прессованием.


Емкость для компоста из PLA

PLA, как и PET, требует просушки. Технология обработки аналогична LDPE. Рецикляты можно подвергать повторной полимеризации или размалывать и использовать повторно. Материал поддается полному биохимическому распаду. Изначально применявшийся в формовании листовых термопластов, производстве пленок и волокон, сегодня этот материал также используется для формования раздувом. Подобно PET, пластик на основе зерна позволяет производить целый ряд разнообразных и сложных форм бутылок всех размеров и используется компанией Biota для формования с раздувом и вытяжкой бутылок для розлива родниковой воды высшего качества. Однослойные бутылки из NatureWorks PLA формуются на том же оборудовании литья под давлением/ориентированного формования раздувом, которое используется для PET, без потери производительности. Хотя барьерная эффективность NatureWorks PLA ниже, чем у PET, он может конкурировать с полипропиленом. Более того, компания SIG Corpoplast в настоящее время осуществляет разработки по использованию своей технологии покрытий "Plasmax" для таких альтернативных материалов в целях повышения ее барьерной эффективности и, следовательно, расширения области ее применения. Материалам NatureWorks не хватает теплостойкости, свойственной стандартным пластмассам. Они начинают терять форму уже при температуре около 40°C, но поставщику удается добиваться значительных успехов в создании новых марок, которые обладают термостойкостью пластмасс на основе нефти, и, таким образом, получают новые возможности применения в упаковках для горячих продуктов и напитках, продаваемых на вынос, или продуктов, разогреваемых в микроволновой печи.

Пластики, снижающие нефтяную зависимость
Повышенная заинтересованность в снижении зависимости полимерного производства от нефтяных ресурсов также способствует разработке новых полимеров или составов. С учетом нарастающей необходимости снижения зависимости от нефтепродуктов особое внимание уделяется значимости максимизации использования возобновляемых ресурсов в качестве источника сырья. Показательным примером является использование соевых бобов для производства полиола на биооснове Soyol в качестве основного сырья для полиуретана.
Ежегодно пластмассовая промышленность использует несколько миллиардов фунтов наполнителей и усилителей. Усовершенствованная технология составов и новые связующие агенты, позволяющие повышать уровень загрузки волокон и наполнителей, способствуют расширению применения таких добавок. В ближайшем будущем уровень загрузки волокна, составляющий 75 частей на сто, может стать распространенной практикой. Это окажет колоссальное воздействие на сокращение использования пластиков на основе нефти. Новая технология высоконаполненных композитов демонстрирует некоторые весьма интересные свойства. Исследования композита 85% кенаф-термопластик показали, что его свойства, например, модуль упругости при изгибе и прочность, превосходят большинство типов древесных частиц, ДСП низкой и средней плотности, а также может в некоторых применениях конкурировать даже с ориентированно-стружечными плитами.

ОБЩИЕ СВЕДЕНИЯ О КУЛЬТИВИРОВАНИИ МИКРООРГАНИЗМОВ

В общем смысле, ферментация - это биохимическая переработка сырья под воздействием ферментов, содержащихся в нем самом и в сапротрофах (чайного листа, листьев табака), а также вызываемая микроорганизмами. Однако в нашем случае мы рассматриваем исключительно микробную ферментацию (или микробное брожение).

В этой самой старой из всех методик, применяемых в биотехнологии, для производства желаемых продуктов используются живые клетки или молекулярные компоненты их «производственного оборудования». В качестве живых клеток, как правило, используются одноклеточные микроорганизмы, такие как дрожжи или бактерии; из молекулярных компонентов чаще всего находят применение различные ферменты - белки, катализирующие биохимические реакции.

Ферментация - процесс, в котором происходит преобразование исходного сырья в продукт с использованием биохимической деятельности микроорганизмов или изолированных клеток.

Практически синонимами слова «ферментация» можно считать такие термины, как культивирование, выращивание микроорганизмов, биосинте з (см. )

Следует отличать микробную ферментацию от биокатализа (в котором уже полученный ранее фермент или биомасса микроорганизмов используются как катализаторы биохимического процесса синтеза продукта из исходного сырья и реагентов) и от биотрансформации (в этом процессе также применяется биокатализатор в виде фермента или биомассы микроорганизмов, но исходное вещество по химической структуре мало отличается от продукта биотрансформации).

Итак, разновидность ферментации - микробное брожение - неосознанно использовалось человеком в течение не одной тысячи лет для производства пива, вина, дрожжевого хлеба и консервированных продуктов - квашеных овощей, соленой (на самом деле - ферментированной) рыбы и т.п. Когда в середине 18 века была открыта роль микроорганизмов в брожении и люди осознали, что именно биохимическим процессам их жизнедеятельности мы обязаны существованием всех этих продуктов, применение методов ферментации значительно расширилось. В настоящее время мы используем довольно широкий спектр возможностей природных микроорганизмов, которые обеспечивают производство необходимых нам продуктов, таких как антибиотики, противозачаточные средства, аминокислоты, витамины, промышленные растворители, красители, пестициды и добавки, необходимые для приготовления пищи.

Микробная ферментация, в комбинации с методом рекомбинантных ДНК, используется для изготовления большого количества продуктов биологического происхождения: человеческого инсулина; вакцины против гепатита В; фермента, используемого для изготовления сыра; разлагаемой микроорганизмами пластмассы; ферментов, входящих в состав стиральных порошков и многого другого. Кроме того, ферментеры используются для выращивания культур самых разных животных и растительных клеток.

Ферментация - это совокупность процессов, результатом которых является культуральная жидкость.

Культуральная жидкость (culture broth) [лат. cultus — возделывание, обрабатывание] - сложная многокомпонентная система, в водной фазе которой содержатся клетки-продуценты, продукты их жизнедеятельности, непотребленные компоненты питательной среды и др. На стадии выделения целевого продукта следует учитывать место его локализации: внеклеточное или внутриклеточное. Иными словами, культуральная жидкость - жидкая среда, получаемая при культивировании различных про- и эукариотических клеток in vitro и содержащая остаточные питательные вещества и продукты метаболизма этих клеток.

РОСТ И РАЗМНОЖЕНИЕ БАКТЕРИЙ НА ЖИДКОЙ ПИТАТЕЛЬНОЙ СРЕДЕ

При описании процессов ферментации мы не редко упоминаем о "росте" и "размножении" микроорганизмов. Но многие часто путают значения этих слов или ошибочно считают их разными названиями одного и того же процесса. Это не так. Под ростом прокариотной клетки понимают согласованное увеличение количества всех химических компонентов, из которых она построена.

Рост бактерий является результатом множества скоординированных биосинтетических процессов, находящихся под строгим регуляторным контролем, и приводит к увеличению массы (а, следовательно, и размеров) клетки. Но рост клетки не беспределен. После достижения определенных (критических) размеров клетка подвергается делению, т.е. размножается.

Размножение бактерий определяется временем генерации. Это период, в течение которого осуществляется деление клетки. Продолжительность генерации зависит от вида бактерий, возраста, состава питательной среды, температуры и др.

Процесс культивации микроорганизмов - ферментация - начинается с того момента, когда заранее подготовленный посевной материал вводится в реактор. Размножение культуры микроорганизма характеризуется четырьмя временными фазами: лаг-фаза; экспоненциальная; стационарная; вымирание.


Рис.1. Фазы размножения бактериальной клетки на жидкой питательной среде

1)- Лаг-фаза (фаза покоя); продолжительность - 3-4 ч, происходит адаптация бактерий к питательной среде, начинается активный рост клеток, но активного размножения еще нет; в это время увеличивается количество белка, РНК. Во время лаг-фазы метаболизм клеток направлен на то, чтобы синтезировать ферменты для размножения в конкретной среде. Длительность лаг-фазы может быть разной для одной и той же культуры и среды, так как на неё влияет множество факторов. Например, сколько в посевном материале было нерастущих клеток.

2)- Экспоненциальная фаза - это период логарифмического размножения, когда происходит деление клеток с экспоненциальным ростом численности популяции; размножение преобладает над гибелью. Этот период ограничен во времени количеством питательной среды. Питательные вещества кончаются или рост клеток замедляется из-за выделения токсичного метаболита.


Рис. 2. Процесс деления бактериальной клетки

3)- Стационарная фаза. Рост прекращается и наступает так называемая стационарная фаза. Бактерии достигают максимальной концентрации, т.е. максимального количества жизнеспособных особей в популяции; количество погибших бактерий равно количеству образующихся; дальнейшего увеличения числа особей не происходит; Метаболизм продолжается и может начаться выделение вторичных метаболитов. Во многих случаях целью является получение не биомассы, а именно вторичных метаболитов, так как они могут использоваться для получения ценных продуктов и препаратов. В этих случаях ферментация целенаправленно удерживается в стационарной фазе.

4)- Фаза отмирания. Если продолжать ферментацию дальше, клетки постепенно будут терять активность, т.е. вымирать. Это фаза ускоренной гибели; процессы гибели преобладают над процессом размножения, так как истощаются питательные субстраты в среде. Накапливаются токсические продукты, продукты метаболизма. Этой фазы можно избежать, если использовать метод проточного культивирования: из питательной среды постоянно удаляются продукты метаболизма и восполняются питательные вещества.

О СТАДИИ ФЕРМЕНТАЦИИ

Стадия ферментации является основной стадией в биотехнологическом процессе, так как в ее ходе происходит взаимодействие продуцента с субстратом и образование целевых продуктов (биомасс, эндо- и экзопродуктов). Эта стадия осуществляется в биохимическом реакторе (ферментере) и может быть организована в зависимости от особенностей используемого продуцента и требований к типу и качеству конечного продукта различными способами. Ферментация может проходить в строго асептических условиях и без соблюдения правил стерильности (так называемая «незащищенная» ферментация).

Ферментация в жидкой и в твердофазной среде

Культивирование на жидких средах можно разделить на поверхностную и глубинную ферментацию. Поверхностная протекает в кюветах со средой. Кюветы располагают в вентилируемые воздухом камеры. В результате процесса на поверхности среды образуется биомасса в виде пленки или твердого слоя.

Глубинная ферментация происходит во всем объеме жидкой среды. Данный вид ферментации осуществляется как периодическим, так и непрерывным способами.

Твердофазная ферментация , в твердой, сыпучей либо пастообразной среде влажностью от 30 до 80 % осуществляется тремя способами (рис. 3):

  • субстрат при поверхностных процессах располагают на подносах тонким слоем (3…7 мм);
  • глубинную твердофазную ферментацию проводят в глубоких открытых сосудах, субстрат при этом не перемешивают;
  • твердофазная ферментация производится перемешиванием в аэрируемой массе субстрата.

Ферментация (культивирование) может протекать как в аэробных, так и в анаэробных условиях:

Аэробное культивирование применяют в тех случаях, когда в процессе задействованы аэробные микроорганизмы-продуценты. Аэрацию смеси осуществляют подачей воздуха или других газов через газоподводящие трубки, форсунки и т. д.

Анаэробные процессы протекают в герметичных емкостях либо посредством продувания культивируемой среды инертными газами. Конструкция ферментера при анаэробной ферментации проще, чем при аэробной.

Для каждого вида процесса ферментации разработаны различные конструкции ферментеров (рис. 2).

КЛАССИФИКАЦИЯ ПРОЦЕССОВ ФЕРМЕНТАЦИИ


Рис. 3. Классификация процессов ферментации

По признаку целевого продукта процесса ферментация может быть следующих типов:

  1. Ферментация, в которой целевым продуктом является сама биомасса микроорганизмов; именно такие процессы часто обозначают словами «культивирование», «выращивание»;
  2. Целевым продуктом является не сама биомасса, а продукты метаболизма - внеклеточные или внутриклеточные; такие процессы часто называют процессами биосинтеза;
  3. Задачей ферментации является утилизация определенных компонентов исходной среды; к таким процессам относятся биоокисление, метановое брожение, биокомпостирование и биодеградация.

Исходную среду в процессах ферментации или ее основной компонент часто обозначают словом субстрат .

По основной фазе , в которой протекает процесс ферментации, различаются:

  1. Поверхностная (преимущ. твердофазная ) ферментация (культивирование на агаровых средах, на зерне, производство сыра и колбас, биокомпостирование и др.);
  2. Глубинная (преимущ. жидкофазная ) ферментация, где биомасса микроорганизмов суспендирована в жидкой питательной среде, через которую при необходимости продувается воздух или другие газы;

По отношению к кислороду - различают аэробную, анаэробную и факультативно-анаэробную ферментацию по аналогии склассификацией самих микроорганизмов.

По отношению к свету - световая (фототрофная) и темновая (хемотрофная) ферментация.

По степени защищенности от посторонней микрофлоры - асептическая, условно асептическая и неасептическая ферментация. Иногда асептическую ферментацию называют стерильной, что неверно: в среде есть целевые микроорганизмы, но нет чужеродных.

Вусловно асептической ферментации допускается некоторый уровень попадания посторонней микрофлоры, которая способна сосуществовать с основной или по содержанию не превышает определенного предела.

По числу видов микроорганизмов - различают ферментации на основе монокультуры (или чистой культуры) и смешанное культивирование, в котором осуществляется совместное развитие ассоциации двух или более культур.

ПРОЦЕССЫ ФЕРМЕНТАЦИИ ПО СПОСОБУ ОРГАНИЗАЦИИ :

  • периодические;
  • непрерывные;
  • объемно-доливные;
  • периодические с подпиткой субстрата;

Все эти виды ферментации (по способу их организации) легко идентифицировать но способу загрузки сырья и выгрузки продукта.

В периодических процессах загрузка сырья и посевного материала в аппарат производится единовременно, затем в аппарате в течение определенного времени идет процесс, а после его завершения полученная ферментационная жидкость выгружается из аппарата.

В непрерывных процессах загрузка и выгрузка среды протекают непрерывно и одновременно, причем скорость подачи в аппарат свежей питательной среды равна скорости отбора из аппарата ферментационной жидкости. В итоге объем среды в аппарате сохраняется постоянным в течение длительного времени (рис. 4.2), теоретически - бесконечно, а практически - до какой-нибудь неполадки.

В объемно-доливных процессах ферментация в промежутках между загрузкой и разгрузкой аппарата протекает как периодическая, но после некоторого времени, определяемого по состоянию процесса, часть ферментативной среды выгружают и заменяю свежей средой.

В периодическом процессе с подпиткой субстрата часть среды загружается в начале ферментации, а другая часть добавляется Непрерывно по мере протекания процесса (рис. 4.5). Естественным завершением процесса является переполнение аппарата, поэтому необходимо переходить на строго периодический процесс с максимальным объемом среды и быстро завершать его.

БИОРЕАКТОРЫ (ФЕРМЕНТЕРЫ)


Рис. 4. Классификация ферментеров

Для глубинного культивирования бактерий в промышленных и лабораторных условиях применяют биореакторы или ферментеры. Ферментер (биореактор) - это прибор, осуществляющий перемешивание культуральной среды в процессе микробиологического синтеза, представляет собой герметический котел, в который заливается жидкая питательная среда. Ферментеры снабжены автоматическими приспособлениями, позволяющими поддерживать постоянную температуру, оптимальную рН и редокс-потенциал, дозированное поступление необходимых питательных веществ.

Применяется в биотехнологической промышленности при производстве лекарственных и ветеринарных препаратов, вакцин, продуктов пищевой промышленности (ферменты, пищевые добавки, глюкозные сиропы), а также при биоконверсии крахмала и производстве полисахаридов и нефтедеструкторов.

Различают механические, аэрлифтные и газо-вихревые биореакторы, а также аэробные (с подачей воздуха или газовых смесей с кислородом), анаэробные (без подачи кислорода) и комбинированные — аэробно-анаэробные.

ОБЩАЯ СХЕМА МИКРОБИОЛОГИЧЕСКОГО ПРОИЗВОДСТВА

Рис. 5. Схема обычного ферментера

Обычный ферментер представляет собой закрытый цилиндр, в котором механически перемешиваются среда вместе с микроорганизмами. Через него прокачивают воздух, иногда насыщенный кислородом. Температура регулируется с помощью воды или пара, пропускаемых по трубкам теплообменника. Конструкция ферментера должна позволять регулировать условия роста: постоянную температуру, pH (кислотность или щелочность) и концентрацию растворенного в среде кислорода.

1. Подготовка питательной среды

Питательная среда служит источником органического углерода - основного строительного элемента жизни. Микроорганизмы поглощают широкий спектр органических соединений - от метана (СH 4), метанола (СH 3 OH) и углекислоты (СO 2) до природных биополимеров. Кроме углерода клетки нуждаются в азоте, фосфоре и других элементах (K, Mg, Zn, Fe, Cu, Mo, Mn и др.) Важный элемент подготовки питательных сред - стерилизация с целью уничтожения всех посторонних микроорганизмов. Ее проводят термическим, радиационным, фильтрационным или химическим методами.

2. Получение чистых штаммов для внесения в ферментер.

Прежде чем начать процесс ферментации, необходимо получить чистую высокопродуктивную культуру. Чистую культуру микроорганизмов хранят в очень небольших объемах и в условиях, обеспечивающих ее жизнеспособность и продуктивность (обычно это достигается хранением при низкой температуре). Необходимо все время поддерживать чистоту культуры, не допуская ее заражения посторонними микроорганизмами.

3. Ферментация - основной этап биотехнологического процесса.

Ферментация - это вся совокупность операций от внесения микробов в подготовленную и нагретую до необходимой температуры среду до завершения биосинтеза целевого продукта или роста клеток . Весь процесс протекает в специальной установке - ферментере.

По окончании ферментации образуется смесь рабочих микроорганизмов, раствора непотребленных питательных компонентов и продуктов биосинтеза. Ее называют культуральной жидкостью или бульоном .

4. Выделение и очистка конечного продукта.

По завершении ферментации продукт, который желали получить, очищают от других составляющих бульона. Для этого используют различные технологические приемы: фильтрацию, сепарирование (осаждение частиц взвеси под действием центробежной силы), химическое осаждение и др.

5. Получение товарных форм продукта.

Последней стадией биотехнологического цикла является получение товарных форм продукта. Они представляют собой либо смесь, либо очищенный продукт (особенно если он предназначен для использования в медицинских целях).

На заметку:

ФАКТЫ О РАЗМНОЖЕНИИ БАКТЕРИЙ

При благоприятных условиях размножение микроорганизмов идет очень быстро. Считают, что бактерия делится пополам через каждые 20-30 мин. По подсчету ботаника Кона, при беспрепятственном размножении в течение 5 суток потомство одной бактерии средней величины (2 мк длины и 1 мк ширины) заняло бы объем, равный объему всех морей и океанов. Но размножение бактерий ограничено рядом факторов и таких фантастических размеров не достигает.

Чрезвычайно малые размеры бактерий и быстрота их размножения имеют огромное значение для понимания условий взаимодействия между микробами и окружающей средой. Объем воды в 0,001 мл способен вместить до 10 9 бактерий. При внесении такого количества бактерий в 1 мл воды в случае равномерного распределения их по всему объему на 1 л воды придется 10 6 бактерий или 1000 бактерий на 1 мл воды. Вот почему, например, ничтожное (!) количество зараженного болезнетворными бактериями вещества достаточно для распространения инфекционных заболеваний, передаваемых через воду.

Ферментация - химические реакции с участием белковых катализаторов - ферментов . Обычно происходят в живой клетке. Часто путают с брожением , но ферментация лишь более простая часть из многих сложных процессов брожения. Например, в результате брожения размножаются дрожжи, а под действием ферментов, вырабатываемых дрожжами, сахар превращается в спирт.

Использование

Исторически наиболее древняя методика использования ферментации - пивоварение. Зерна злаков содержат нерастворимый трудно усваиваемый крахмал. Это делает зерна защищёнными против многих бактерий в течение очень большого срока, но и в то же время крахмал недоступен и самому ростку. Но растущий росток вырабатывает ферменты, превращающие крахмал в легко растворимую и усваиваемую глюкозу. В пивоварении специально проращивают зерна и в оптимальный момент приготовления солода , когда концентрация фермента высокая, росток убивают нагревом. Фермент продолжает превращать крахмал в сахар, который используется для дальнейшего брожения. Таким ферментом является амилаза , превращающая крахмал в мальтозу . Амилаза содержится также в слюне, благодаря чему долго пережёвываемый рис или картофель получает сладковатый привкус.

Другой старинный способ ферментации - сыроделие. Для свёртывания молока используют различные

Воочию убедиться, что Илья Кокотовский готовит неординарные вещи могли те, кто пришел на нашу первую встречу проекта Modern Mondays.
Кроме этого, его меню для Molto Buono- отличный пример того, как можно создавать интересные блюда, не используя ни модных отечественных специалитетов, ни западных деликатесов (которые все равно из-за санкций не купишь)
Мы с удовольствием публикуем его статью о ферментации продуктов и результатах изысканий, еще раз подчеркивая тезис о том, что хороший шеф должен обладать не только практическими знаниями, но и иметь широкую теоретическую базу

Ферментация…
Эта тема настолько обширна, что описать все в одной статье не представляется возможным.
Так что это скорее небольшой доклад, знакомство с возможностями, чем подробное руководство к действию.

Для начала парочка сухих определений. Без них, к сожалению, никак.

Брожение — это процесс анаэробного (проходящего в бескислородной среде) расщепления органических веществ, происходящий под воздействием микроорганизмов или выделенных ферментов.

Ферментация — это биохимическая переработка сырья под воздействием собственных ферментов субстрата.

Оба процесса протекают в бескислородной среде и являются метаболическими процессами.

Есть одно существенное различие — при брожении могут использоваться сторонние культуры и штаммы бактерий. Как правило- дрожжи и ферменты, полученные в результате реакции. Тогда как при ферментации используются естественные дрожжи и другие культуры субстрата, содержащиеся в нем самом.

Таким образом, ферментация- это более узкое понятие.

Чем мы обязаны брожению?

Спиртовое брожение- штамм — дрожжи
процесс- глюкоза расщепляется до этанола и углекислого газа.
продукт- хлеб и его производные, все производные пива,
виноделие.

Молочнокислое брожение- штамм- Lactobacillus acidophilus, Lactobacillus bulgaricus.
процесс- преобразование лактозы в молочную кислоту
продукт- все производные кисломолочных продуктов.
см. Фото 1

Уксусное брожение- штамм- Acelobacter, около 10 основных разновидностей.
Процесс- распад глюкозы на этанол, углекислый газ.
Окисление этанола до уксусной кислоты.
Продукт- все производные уксусов, симбиотическая культура-
чайный гриб.

Маслянокислое брожение-штамм- Clostridium.
Процесс- результатом деятельности бактерий является
прогоркание жиров
продукт- Бактерии рода Клостридий вырабатывают наиболее сильные из известных ядов - ботулотоксин
один из видов бактерии является возбудителем ботулизма.
см. Фото 2

Продукты ферментации различны, некоторые из них прочно заняли свое место на кухнях мира, став основой для многих рецептов, другие являются опасными токсинами.
Именно поэтому любой продукт, прошедший ферментацию, обязательно подлежит анализу в лабораториях.
Нередко продвинутые рестораны имеют штатного микробиолога для контроля исходного продукта.

Есть и другой путь.
Мы можем менять продукт- его вкус, цвет, аромат, не прибегая к помощи штаммов бактерий.

Ферментативное окисление — это процесс протекающий под влиянием кислорода. По отношению к фруктам — это окисление железосодержащих соединений, а также меланина, образуемого при ферментативном окислении тирозина и пирокатехина.

Мы наблюдаем ферментативное окисление, когда видим потеменение среза яблока, айвы, банана, картофеля и многих других продуктов в большей или меньшей степени.
Для этого необходимо только присутствие кислорода, время и температура.

Вот некоторые из моих изысканий:

Чеснок- ферментативное окисление
см. Фото 3

В процессе чеснок полностью изменил структуру, поменял цвет, аромат на более тонкий, лишенный резких нот. Для ферментации я использовал теплую среду с возможностью доступа воздуха. Присутствие кислорода, это как вы уже поняли основное требование.
Для самого чеснока есть несколько путей ферментации.
1. это долгая ферментация в горячей контролируемой среде. Для этого подходит горячий бокс для хранения сухих продуктов. Температура около 30 г. ц. время — 6 недель. Такой способ длителен и результат не всегда одинаков. Очень важно сохранение влажности вокруг чеснока, поэтому ферментация проходит в индивидуальном боксе с доступов воздуха.
2. ферментация с помощью корейской ферментационной машины. Ее можно заказать по интернету. Но результат стоит того. Время ферментации сокращается до 3-х дней. Температура выше, но на конечном результате это не отражается.

Мини банан- ферментативное окисление.
см. Фото 4

Окисление банана очень вариативно, необходимо только соблюдать заданную температуру. Чем больше времени проходит ферментация, тем боле однородным и сухим он становится. Цвет меняется от терракотового до черного. Меняется аромат к более тонкому.

Этот вид ферментации более безопасен и имеет большой потенциал. Множество экспериментов и новых компонентов, вас ограничивает только ваше собственное терпение, ведь процесс как правило долгий. Кроме того это верный способ добиться пресловутого умами.

С терпением туго, меня всегда так и подмывает увидеть результат, что касается бананов, не редко конца ферментации они вообще не дожидаются,)

Следующий на очереди:
Симбиотическая структура «чайный гриб ». явление просто уникальное. И наверное самый наглядный представитель симбиоза Acelobacter и дрожжей.
Он заслуживает отдельной темы, поэтому до следующего доклада.

Ключевые слова

МОЛОДНЯК КРУПНОГО РОГАТОГО СКОТА / РУБЕЦ / ПРОБИОТИК / АММИАК / КОНЦЕНТРАЦИЯ ВОДОРОДНЫХ ИОНОВ / ЛЕТУЧИЕ ЖИРНЫЕ КИСЛОТЫ / YOUNG CATTLE / RUMEN / PROBIOTIC / AMMONIA / HYDROGEN IONS CONCENTRATION / VOLATILE FATTY ACIDS

Аннотация научной статьи по животноводству и молочному делу, автор научной работы - Бабичева Ирина Андреевна, Мустафин Рамис Зуфарович

Изучено воздействие штаммов пробиотических препаратов Бацелл и Лактомикроцикол на рубцовое содержимое . Препараты включают в себя живые лактобактерии, бифидобактерии, незаменимые аминокислоты, органические кислоты, витамины, микроэлементы и биологически активные вещества. Для опыта с микробиологическим препаратом Бацелл были подобраны бычки казахской белоголовой породы, к основному рациону животных опытных групп добавляли пробиотик в дозах 15, 25 и 35 г/гол. в сутки. Препарат Лактомикроцикол вводили в основной рацион молодняка красной степной породы в дозах 10 г/гол/сут. в течение 3 мес.; 10 г в первые 7 сут., затем недельный перерыв и так в течение 3 мес; 10 г в первые 7 сут., затем 1 раз в декаду в течение 3 мес. В ходе исследования было отмечено смещение показателя концентрации водородных ионов в преджелудках животных в кислую сторону на 3,2-3,6% при скармливании Бацелла, что, по мнению авторов, объясняется увеличением концентрации ЛЖК в жидкости рубца бычков на 26,7%. Использование в составе рациона мультиэнзимного препарата Бацелл способствовало снижению концентрации аммиака в рубце, причём это снижение было заметно только у животных, получавших пробиотик в дозах 25 и 35 г/гол.в сутки. Скармливание кормовой добавки Лактомикроцикол также оказало влияние на рубцовое содержимое у подопытных животных. Анализ данных, полученных в результате эксперимента, позволил выявить, что наибольшая концентрация ЛЖК в рубцовой жидкости наблюдалась у бычков, к основному рациону которых добавляли 10 г пробиотика в первые 7 сут., затем делали недельный перерыв и так проводили в течение 3-х месяцев. В содержимом рубца этих животных выявлено больше летучих жирных кислот до кормления (на 3,6-8,6%), а также после кормления (на 2,8-13,4%). Результаты исследования рекомендуется использовать в хозяйствах Оренбургской области и других регионов, имеющих сходные условия содержания и выращивания молодняка крупного рогатого скота казахской белоголовой породы и красной степной породы.

Похожие темы научных работ по животноводству и молочному делу, автор научной работы - Бабичева Ирина Андреевна, Мустафин Рамис Зуфарович

  • Воздействие пробиотика на рубцовое содержимое молодняка красной степной породы

    2014 / Никулин Владимир Николаевич, Мустафин Рамис Зуфарович, Биктимиров Ринат Аптлажанович
  • 2016 / Христиановский Павел Игоревич, Гонтюрёв Владимир Анисимович, Иванов Сергей Анатольевич
  • Биохимические и микробиологические показатели содержимого рубца у бычков при использовании лактоамиловорина и селенита натрия

    2014 / Биктимиров Ринат Аптлажанович
  • Характеристика рубцового пищеварения жвачных животных при введении в рацион металлорганических комплексов

    2017 / Курилкина Марина Яковлевна, Холодилина Татьяна Николаевна, Муслюмова Дина Марсельевна, Атландерова Ксения Николаевна, Поберухин Михаил Михайлович
  • Особенности рубцового пищеварения бычков при скармливании различных доз кватерина

    2010 / Бабичева Ирина Андреевна
  • Влияние жиросодержащей добавки Палматрикс на процессы рубцового пищеварения бычков и эффективность использования ими питательных веществ рациона

    2018 / Левахин Юрий Иванович, Нуржанов Баер Серекпаевич, Рязанов Виталий Александрович, Поберухин Михаил Михайлович
  • Содержимое рубца молодняка крупного рогатого скота при скармливании микродобавок селена и йода

    2016 / Прохоров О.Н., Зубова Т.В., Колокольцова Е.А., Сапарова Е.И.
  • Влияние различных способов скармливания смесей сахаросодержащих компонентов на течение пищеварительных процессов в рубце

    2011 / Казачкова Надежда Михайловна
  • Использование питательных веществ корма бычками при скармливании различных доз пробиотика Бацелл

    2013 / Ворошилова Лариса Николаевна, Левахин Владимир Иванович
  • Влияние Ксиланита, Фоспасима и настойки пустырника на метаболические и функциональные показатели в организме кроликоматок при длительной транспортировке

    2016 / Ибрагимова Людмила Леонидовна, Исмагилова Эльза Равильевна

BACTERIAL FERMENTATION OF NUTRIENTS IN THE RUMEN OF CATTLE FED DIETS SUPPLEMENTED WITH PROBIOTIC PREPARATIONS

The effect of strains of the Bacell and Lactomicrotsikol probiotic preparations on the rumen contents of young cattle has been studied. The preparations include live lactobacteria, bifidobacteria, essential amino acids, organic acids, vitamins, minerals and biologically active substances. Kazakh White-Head steers were selected for the trials to test the microbiological Bacell preparation, which was added to the basic diet of animals of experimental groups in the doses of 15, 25 and 35 g/head a day. The Lactomicrotsikol supplement was introduced into the basic diet of the Red Steppe young animals in the doses of 10 g/head during 3 months; 10 g in the first 7 days, then a weekly interval, this mode of feeding being repeated during 3 months; then again 10 g in the first 7 days after the above three months, which was followed by once a decade feeding of the supplement for 3 months more. In the course of studies there was observed a shift of the hydrogen ions concentration index in the animals’ gizzards to the acidic side at 3.2-3.6%, when the Bacell preparation was fed, which is believed to be due to the increase of volatile fatty acids (VFA) concentration in the rumen fluid of steers by 26.7%. The inclusion of the multi-enzyme Bacell preparation into the diet stimulated the decrease of ammonia concentration in the rumen , this reduction having been observed only in animals obtaining the probiotic in doses of 25 and 35 g/day per head. The Laktomicrotsikol supplement fed to the animals influenced the ammonia content in the rumen of animals under study. The analysis of findings obtained as result of trials conducted revealed that the highest concentration of VFA in rumen fluid was observed in steers fed the basic diet supplemented with 10 g of the above probiotic in the first 7 days, followed with a week interval, with this mode of feeding having been repeated during the period of 3 months. In the rumen contents of these animals there was observed more volatile fatty acids before feeding (at 3.6-8.6%), and after feeding (at 2.8-13.4%) the probiotic . It is recommended to use the data, obtained in the course of studies, on the farms of Orenburg region and of other regions with similar conditions of Kazakh White-Head and Red Steppe young cattle management.

Текст научной работы на тему «Бактериальная ферментация питательных веществ в рубце при использовании пробиотических препаратов»

контрольной гр. прослушивали жёсткое везикулярное дыхание, сопровождающееся кашлем. На лапках образовались зачёсы. У двух кроликов был отмечен сильный, громкий, короткий, поверхностный кашель, область гортани припухла, температура тела повысилась (44,2°С), что свидетельствовало о воспалении гортани и трахеи. В III гр. соответствующие признаки ринита были отмечены только у двух особей, остальные находились в здоровом состоянии. У кроликоматок IV и V групп клинические признаки ринита не проявились.

Вывод. Введение перед транспортировкой препарата Ксиланит в дозе 0,45 мл на голову или гомеопатического препарата Фоспасим, 0,4 мл на голову, дважды - перед транспортировкой и после выгрузки в первый день адаптации, далее перорально по 12-13 капель ежедневно в течение 7 сут. предупреждает нарушение метаболических и функциональных изменений в организме и тем самым снижает эмоциональный стресс, улучшает процесс адаптации кроликоматок калифорнийской породы при длительной транспортировке.

Литература

1. Исмагилова Э.Р., Ибрагимова Л.Л. Применение гомеопатического препарата «Фоспасим» для повышения адаптационной способности кроликов при транспортировке // Фундаментальные исследования. 2013. № 8 (ч. 2). С. 376-379.

2. Ибрагимова Л.Л., Исмагилова Э.Р. Гистоструктура миокарда и надпочечников кроликов при транспортировке и применении препарата протектора // Фундаментальные исследования. 2013. № 10 (ч. 3). С. 164-167.

3. Магер С.Н., Напримеров В.А., Смирнов П.Н. Влияние стресс-факторов на воспроизводительную способность крупного рогатого скота // Вестник Новосибирского государственного аграрного университета. 2005. № 2. С. 49.

4. Сапожникова О.Г., Оробец В.А., Славецкая Б.М. Гомеопатическая коррекция стресса // Международный вестник ветеринарии. 2010. № 2. С. 44-46.

5. Крылов В.Н., Косилов В.И. Показатели крови молодняка казахской белоголовой породы и её помесей со светлой аквитанской // Известия Оренбургского государственного аграрного университета. 2009. № 2 (22). С. 121-125.

6. Литвинов К.С., Косилов В.И. Гематологические показатели молодняка красной степной породы // Вестник мясного скотоводства. 2008. Т. 1. № 61. С. 148-154.

7. Траисов Б.Б. Гематологические показатели мясо-шёрстных овец / Б.Б. Траисов, К.Г. Есенгалиев, А.К. Бозымова, В.И. Косилов // Известия Оренбургского государственного аграрного университета. 2012. № 3 (35). С. 124-125.

8. Антонова В.С., Топурия Г.М., Косилов В.И. Методология научных исследований в животноводстве. Оренбург, 2011. 246 с.

Бактериальная ферментация питательных веществ в рубце при использовании пробиотических препаратов

И.А. Бабичева, д.б.н., Р.З. Мустафин, к.б.н., ФГБОУ ВО Оренбургский ГАУ

Многообразные превращения питательных веществ в преджелудках жвачных животных происходят под действием различных видов микроорганизмов . При этом, проходя ряд полиступенчатых преобразований, в рубце образуется много метаболитов, одни из которых становятся для организма пластическим и энергетическим материалом, другие же превращаются в микро-биальный полноценный белок, являясь основным источником необходимых биологически активных веществ и незаменимых аминокислот .

Поэтому для обеспечения полигастричных животных нормальным питанием прежде всего следует создать оптимальные условия для развития микрофлоры . Степень интенсивности её жизнедеятельности зависит от многих факторов, важнейшими из которых являются концентрация водородных ионов среды, состояние стенок слизистой рубца, а также количество метаболитов корма в преджелудках .

Целью исследований было изучение воздействия штаммов пробиотических препаратов Бацелл и Лактомикроцикол на рубцовое содержимое молодняка крупного рогатого скота.

Материал и методы исследования. Для опыта с микробиологическим препаратом Бацелл были

подобраны бычки казахской белоголовой породы. Различия по группам заключались в том, что бычки опытных групп, в отличие от контрольных сверстников, к основному рациону дополнительно получали пробиотик в дозах соответственно 15, 25 и 35 г/гол. в сутки.

Влияние пробиотика Лактомикроцикол на степень интенсивности микробиологических процессов в рубце жвачных оценивали на молодняке красной степной породы. В рацион телят опытных групп включали пробиотик по разработанной схеме.

Исследование по изучению влияния пробиоти-ческих препаратов Бацелл и Лактомикроцикол на рубцовое содержимое бычков проводили в хозяйствах Оренбургской области. В опытах использовали препараты, включающие живые лактобактерии, бифидобактерии, незаменимые аминокислоты, органические кислоты, витамины, микроэлементы и биологически активные вещества.

Результаты исследования позволили установить, что скармливание в составе рациона различного количества кормовой добавки Бацелл, как источника ферментов протеолитического, амилолитического и целлюлозолитического действия, повлияло на степень интенсивности микробиологических процессов (табл. 1).

В частности, концентрация водородных ионов у животных контрольной и I опытной гр. была практически на одном уровне, разница не пре-

1. Концентрация основных метаболитов бактериальной ферментации в рубце животных при употреблении кормовой добавки Бацелл через 3 час. после кормления, (X±Sx)

Показатель Группа

контрольная I опытная II опытная III опытная

рН ЛЖК, ммоль/100 мл Аммиак, ммоль/100 мл 6,89±0,13 7,80±0,10 23,70±0,74 6,87±0,17 8,03±0,13 22,81±0,70 6,65±0,10 9,88±0,11 19,45±0,83 6,68±0,15 9,84±0,11 19,50±0,57

2. Схема опыта при применении кормовой добавки Лактомикроцикол

Группа Количество животных, гол. Исследуемый фактор

Контрольная I опытная II опытная III опытная 10 10 10 10 основной рацион ОР +10 г пробиотика на гол/сут в течение 3 мес. ОР +10 г пробиотика в первые 7 сут., затем недельный перерыв и так в течение 3 мес. ОР +10 г пробиотика в первые 7 сут., затем 1 раз в декаду в течение 3 мес.

3. Биохимические показатели содержимого рубца при скармливании Лактомикроцикола (X±Sx)

Показатель Группа

контрольная I опытная II опытная III пытная

ЛЖК, ммоль/100мл

до кормления через 3 часа 6,4±0,98 8,24±0,27 6,63±1,18* 8,47±0,36 6,95±0,93* 9,35±0,26 6,7±0,27* 8,94±0,23

Аммиак, ммоль/л

до кормления через 3 часа 20,6±0,31 22,67±0,17 20,87±0,61 22,8±0,30 21,6±0,64 24,0±0,12 21,07±0,38* 22,9±0,26

рН до кормления через 3 часа 7,13±0,02 6,79±0,01 7,11±0,01* 6,75±0,01 7,1±0,01* 6,71±0,01 7,11±0,01* 6,73±0,01

Примечание: * - Р < 0,05, разница с контролем достоверна

вышала 0,2-0,4%, тогда как у молодняка II и III I

опытных гр. этот показатель сместился в кислую а

сторону на 3,2-3,6% (Р>0,05). Снижение рН, б

вероятно, связано с увеличением концентрации ч

ЛЖК в жидкости рубца бычков II и III опытных р

гр., которое было на 26,7 и 26,2% (Р>0,05) выше, д

чем у сверстников контрольной гр. Концентрация с летучих жирных кислот в рубце у них находилась на

одном уровне и составила в среднем 9,86 ммоль/л, I

что было выше на 1,83 ммоль/л, или на 22,8% у

(Р>0,05), чем в I опытной гр. г

Использование в составе рациона мультиэн- р

зимного препарата способствовало снижению р

концентрации аммиака в рубце, причём это сни- п жение было заметно только во II и III опытных

гр. Скармливание 15 г/гол/сут этой кормовой до- э

бавки не оказало воздействия на протеолитическую т

активность микрофлоры, что хорошо видно по б содержанию аммиака, которое было практически

одинаковым с контрольными показателями. Раз- б

ница по концентрации аммиака в рубце бычков т

контрольной и II опытной гр. составляла 21,9% ч

(Р<0,05), а молодняка контрольной и III опытной п

гр. - 21,6% (Р<0,05) в пользу контрольной гр. г

Количество образовавшегося через 3 часа после к

кормления аммиака в рубце животных I опытной I

гр. было выше соответственно на 17,3 (Р>0,05) и с

17,0% (Р<0,05), чем у аналогов II и III опытных д

гр., и на 3,9% (Р>0,05) ниже, чем в рубце молод- г

няка контрольной гр. Уменьшение концентрации аммиака в рубце животных II и III гр., видимо, было связано с усилением работы амилолити-ческой микрофлоры, приводящей к снижению рН в кислую сторону и замедлению активности действия протеолитической микрофлоры и их ферментов.

Скармливание кормовой добавки Лактомикро-цикол оказало влияние на рубцовое содержимое у подопытных животных. Бычки контрольной гр. получали основной рацион, питательность которого соответствовала установленным нормам, а в рацион телят опытных групп включали пробиотик по схеме (табл. 2).

Анализируя данные, полученные в результате эксперимента, выяснили, что наибольшая концентрация ЛЖК в рубцовой жидкости наблюдалась у бычков II опытной гр. (табл. 3).

У животных опытных групп в содержимом рубца было больше ЛЖК до кормления на 3,6-8,6%, а также после кормления - на 2,8-13,4%. Полагаем, что большее количество ЛЖК связано с тем, что положительная микрофлора рубцового содержимого более активно участвовала в процессе брожения клетчатки, который ведёт к образованию ЛЖК. Концентрация ЛЖК повлияла на среду рубцового содержимого. Если значение рН рубцового содержимого до кормления у бычков контрольной группы имело слабощелочной характер, то после

кормления среда содержимого рубца стала близка к нейтральной.

Концентрация аммиака до кормления в рубце бычков опытных групп при скармливании Лак-томикроцикола была больше, чем у особей контрольной гр.: I опытной - на 1,3%, II опытной -на 4,85%, III опытной - на 2,85%. Через 3 час. после кормления концентрация аммиака в рубце бычков I опытной гр. превышала показатель в контрольной гр. на 0,57%, II опытной - на 5,87%, III опытной - на 1,01%.

Установлено, что животные опытных групп отличались незначительным снижением уровня рН. При этом повышалась концентрация летучих жирных кислот при незначительном изменении их соотношения. Уровень аммиака и фракционный состав ЛЖК в рубце бычков опытных групп изменялся в пределах физиологической нормы.

Вывод. Препараты Бацелл, Лактомикроцикол положительно воздействуют на микробную ферментацию питательных веществ рубца жвачных животных.

Литература

1. Бабичева И.А., Никулин В.Н. Эффективность использования пробиотических препаратов при выращивании и откорме бычков // Известия Оренбургского государственного аграрного университета. 2014. № 1 (45). С. 167-168.

2. Левахин В.И., Бабичева И.А., Поберухин М.М. и др. Использование пробиотиков в животноводстве // Молочное и мясное скотоводство. 2011. № 2. С. 13-14.

3. Антонова В.С., Топурия Г.М., Косилов В.И. Методология научных исследований в животноводстве. Оренбург: Издательский центр ОГАУ, 2011. 246 с.

4. Миронова И.В., Косилов В.И. Переваримость коровами основных питательных веществ рационов коров чёрно-пёстрой породы при использовании в кормлении пробиотической добавки Ветоспорин-актив // Известия Оренбургского государственного аграрного университета. 2015. № 2 (52). С. 143-146.

5. Миронова И.В. Эффективность использования пробиотика Биодарин в кормлении тёлок / И.В. Миронова, Г.М. Дол-женкова, Н.В. Гизатова, В.И. Косилов // Известия Оренбургского государственного аграрного университета. 2016. № 3 (59). С. 207-210.

6. Мустафин Р.З., Никулин В.Н. Биохимическое обоснование применения пробиотика при выращивании молодняка КРС // Сборник научных трудов Всероссийского института овцеводства и козоводства. 2014. Т. 3. № 7. С. 457-461.

7. Никулин В.Н., Мустафин Р.З., Биктимиров Р.А. Воздействие пробиотика на рубцовое содержимое молодняка красной степной породы // Вестник мясного скотоводства. 2014. № 1 (84). С. 96-100.

8. Косилов В.И., Миронова И.В. Эффективность использования энергии рационов коровами черно-пёстрой породы при скармливании пробиотической добавки Ветоспорин-актив // Известия Оренбургского государственного аграрного университета. 2015. № 2 (52). С. 179-182.

9. Батанов С.Д., Ушакова О.Ю. Пробиотик Бацелл и пробио-тик Лактацид в рационах молочных коров // Кормление сельскохозяйственных животных и кормопроизводство. 2013. № 11. С. 26-34.

10. Мамбетов М.М., Шевхушев А.Ф., Шейкин П.А. Конверсия корма в прирост туши крупного рогатого скота // Вестник ветеринарии. 2002. № 2 (23). С. 60-64.

Эффективность сезонных отёлов коров мясного направления продуктивности

П.И. Христиановский, д.б.н., профессор, ФГБОУ ВО Оренбургский ГАУ; В.А. Гонтюрёв, к.с.-х.н., ФГБНУ ВНИИМС; С.А. Иванов, председатель, СПК (колхоз) «Аниховский», Оренбургская область

В последние годы интерес к мясному скотоводству у сельхозпроизводителей РФ значительно возрос, причём не только в районах, которые всегда специализировались на мясном скотоводстве. Мясной скот стали разводить во многих областях Нечерноземья - в Брянской, Тульской, Калужской, Тверской и др. областях, т.е. в традиционной зоне молочного скотоводства.

В современных условиях мясное скотоводство может стать рентабельной отраслью производства. Мясной скот может использовать скудные степные пастбища, хорошо переносит высокие и низкие температуры, менее требователен к составу рациона, сохранность молодняка мясных пород обычно выше, чем молочных. Помещения для мясного скота более просты и дёшевы. Кроме того, мясное скотоводство может сочетаться с молочным скотоводством или другими отраслями животноводства, которые будут дополнять друг друга .

В мясном скотоводстве наиболее технологичными являются туровые (сезонные) отёлы. Уплотне-

ние сроков отёлов коров позволяет получать телят в более благоприятный период и в дальнейшем формировать однородные гурты молодняка . В связи с этим была определена цель исследования - изучить эффективность сезонных отёлов коров мясного направления продуктивности.

Материал и методы исследования. Материалом для исследования являлись коровы и нетели казахской белоголовой породы из стада СПК (колхоз) «Аниховский» Адамовского района Оренбургской области. Для достижения сезонных отёлов быки в хозяйстве содержатся в маточных гуртах с января по июль. Ежегодно в сентябре проводится гинекологическое обследование коров на стельность и выявление причин бесплодия. Одновременно выполняется бонитировка маточного поголовья, проводится выбраковка коров по непригодности к воспроизводству и зоотехническим показателям .

При проведении исследования были применены методы ректальной диагностики стельности и анализа производственных показателей.

Результаты исследования. В СПК (колхоз) «Аниховский» растёл коров проходит с ноября по февраль, т.е. в стойловый период. При этом контролируется получение приплода, а сами телята находятся под наблюдением. В марте отёл должен