Интересные опыты по химии для маленьких. Эффектные опыты по химии. Химические наборы для детей

Б.Д.СТЕПИН, Л.Ю.АЛИКБЕРОВА

Эффектные опыты по химии

C чего начинается увлечение химией – наукой, полной удивительных загадок, таинственных и непонятных явлений? Очень часто – с химических опытов, которые сопровождаются красочными эффектами, «чудесами». И так было всегда, по крайней мере тому есть множество исторических свидетельств.

В материалах рубрики «Химия в школе и дома» будут описаны простые и интересные опыты. Все они хорошо получаются, если строго соблюдать приведенные рекомендации: ведь на ход реакции часто влияют температура, степень измельчения веществ, концентрация растворов, наличие примесей в исходных веществах, соотношение реагирующих компонентов и даже порядок их прибавления друг к другу.

Любые химические опыты требуют при выполнении осторожности, внимания и аккуратности. Избежать неприятных неожиданностей поможет соблюдение трех простых правил.

Первое: не надо экспериментировать дома с незнакомыми веществами. Не забывайте, что слишком большие количества хорошо известных химикатов в неумелых руках тоже могут стать опасными. Никогда не превышайте количества веществ, указанные в описании опыта.

Второе: прежде чем выполнять любой опыт, надо внимательно прочесть его описание и понять свойства применяемых веществ. Для этого есть учебники, справочники и другая литература.

Третье: надо быть осторожным и предусмотрительным. Если опыты связаны с горением, образованием дыма и вредных газов, следует показывать их там, где это не вызовет неприятных последствий, например в вытяжном шкафу во время занятий химического кружка или под открытым небом. Если во время опыта какие-то вещества разбрасываются или разбрызгиваются, то необходимо обезопасить себя защитными очками либо экраном, а зрителей усадить на безопасном расстоянии. Все опыты с сильными кислотами и щелочами надо проводить, надев очки и резиновые перчатки. Опыты, отмеченные звездочкой (*), могут выполняться только учителем или руководителем химического кружка.

При соблюдении этих правил эксперименты будут успешными. Тогда химические вещества раскроют перед вами чудеса своих превращений.

Елочка в снегу

Для этого опыта надо достать стеклянный колокол, небольшой аквариум, в крайнем случае – пятилитровую стеклянную банку с широким горлом. Нужна также ровная доска или лист фанеры, на которую будут установлены эти сосуды вверх дном. Еще понадобится небольшая пластмассовая игрушечная елочка. Выполняют опыт следующим образом.

Сначала пластмассовую елочку обрызгивают в вытяжном шкафу концентрированной соляной кислотой и тотчас ставят ее под колокол, банку или аквариум (рис. 1). Выдерживают елочку под колоколом 10–15 мин, затем быстро, чуть-чуть приподняв колокол, помещают рядом с елочкой небольшую чашку с концентрированным раствором аммиака. Сразу же в воздухе под колоколом появляется кристаллический «снег», который оседает на елочке, и вскоре вся она покрывается кристаллами, похожими на иней.

Этот эффект вызван реакцией хлороводорода с аммиаком:

НСl + NН 3 = NH 4 Сl,

которая приводит к образованию мельчайших бесцветных кристалликов хлорида аммония, осыпающих елочку.

Искрящиеся кристаллы

Как поверить тому, что вещество при кристаллизации из водного раствора выделяет под водой сноп искр? Но попробуйте смешать 108 г сульфата калия К 2 SO 4 и 100 г декагидрата сульфата натрия Nа 2 SO 4 10Н 2 О (глауберова соль) и добавить порциями при помешивании немного горячей дистиллированной или кипяченой воды, пока все кристаллы не растворятся. Раствор оставьте в темноте, чтобы при охлаждении началась кристаллизация двойной соли состава Nа 2 SO 4 2К 2 SO 4 10Н 2 О. Как только начнут выделяться кристаллы, раствор будет искриться: при 60 °С слабо, а по мере охлаждения все сильнее и сильнее. Когда кристаллов выпадет много, вы увидите целый сноп искр.

Свечение и образование искр вызвано тем, что при кристаллизации двойной соли, которая получается по реакции

2К 2 SO 4 + Na 2 SO 4 + 10Н 2 O = Nа 2 SO 4 2К 2 SO 4 10Н 2 О,

выделяется много энергии, почти полностью превращающейся в световую.

Оранжевый свет

Появление этого удивительного свечения вызвано почти полным превращением энергии химической реакции в световую. Чтобы его наблюдать, к насыщенному водному раствору гидрохинона С 6 Н 4 (ОН) 2 приливают 10–15%-й раствор карбоната калия К 2 СО 3 , формалин – водный раствор формальдегида НСНО и пергидроль – концентрированный раствор пероксида водорода Н 2 О 2 . Свечение жидкости лучше наблюдать в темноте.

Причина выделения света – окислительно-восстановительные реакции превращения гидрохинона С 6 Н 4 (ОН) 2 в хинон С 6 Н 4 О 2 , а формальдегида НСНО – в муравьиную кислоту НСООН:

С 6 Н 4 (ОН) 2 + Н 2 О 2 = С 6 Н 4 О 2 + 2Н 2 О,

НСНО + Н 2 О 2 = НСООН + Н 2 О.

Одновременно протекает реакция нейтрализации муравьиной кислоты карбонатом калия с образованием соли – формиата калия НСООК – и выделением диоксида углерода СО 2 (углекислого газа), поэтому раствор вспенивается:

2НСООН + К 2 СО 3 = 2НСООК + СО 2 + Н 2 О.

Гидрохинон (1,4-гидроксибензол) – бесцветное кристаллическое вещество. Молекула гидрохинона содержит бензольное кольцо, в котором два атома водорода в параположении замещены на две гидроксильные группы.

Гроза в стакане

«Гром» и «молния» в стакане воды? Оказывается, бывает и такое! Сначала взвесьте 5–6 г бромата калия КВrО 3 и 5–6 г дигидрата хлорида бария ВаС 12 2Н 2 О и растворите эти бесцветные кристаллические вещества при нагревании в 100 г дистиллированной воды, а потом смешайте полученные растворы. При охлаждении смеси выпадет осадок малорастворимого на холоду бромата бария Ва(ВrO 3) 2:

2КBrO 3 + ВаСl 2 = Ва(ВrO 3) 2 + 2КСl.

Отфильтруйте выпавший бесцветный осадок кристаллов Ва(ВrO 3) 2 и промойте его 2–3 раза небольшими (5–10 мл) порциями холодной воды. Затем высушите промытый осадок на воздухе. После этого 2 г полученного Ва(ВrO 3) 2 растворите в 50 мл кипящей воды и профильтруйте еще горячий раствор.

Стакан с фильтратом поставьте охлаждаться до 40–45 °С. Это лучше всего сделать на водяной бане, нагретой до такой же температуры. Температуру бани проверяйте термометром и, если она понизится, снова подогрейте воду с помощью электрической плитки.

Закройте окна шторами или выключите свет в комнате, и вы увидите, как в стакане одновременно с появлением кристаллов будут то в одном, то в другом месте возникать голубые искры – «молнии» и раздаваться хлопки «грома». Вот вам и «гроза» в стакане! Световой эффект вызван выделением энергии при кристаллизации, а хлопки – возникновением кристаллов.

Дым из воды

В стакан наливают водопроводную воду и бросают туда кусочек «сухого льда» – твердого диоксида углерода СО 2 . Вода тотчас же забурлит, и из стакана повалит густой белый «дым», образованный охлажденными парами воды, которые увлекает за собой возгоняющийся диоксид углерода. Этот «дым» совершенно безопасен.

Диоксид углерода. Твердый диоксид углерода возгоняется без плавления при низкой температуре, равной –78 °С. В жидком состоянии СО 2 может находиться только под давлением. Газообразный диоксид углерода – бесцветный, негорючий газ со слабым кисловатым вкусом. Вода способна растворять значительное количество газообразного СО 2: 1 л воды при 20 °С и давлении 1 атм поглощает около 0,9 л СО 2 . С водой взаимодействует очень незначительная часть растворенного СО2, при этом образуется угольная кислота Н 2 СО 3 , которая только частично взаимодействует с молекулами воды, образуя ионы оксония Н 3 О + и гидрокарбонатные ионы НСО 3 – :

Н 2 СО 3 + Н 2 О НСО 3 – + Н 3 О + ,

НСО 3 – + Н 2 О СО 3 2– + Н 3 О + .

Таинственное исчезновение

Оксид хрома(III) поможет показать, как вещество бесследно исчезает, исчезает без пламени и дыма. Для этого складывают горкой несколько таблеток «сухого спирта» (твердого горючего на основе уротропина), а сверху насыпают щепотку предварительно разогретого в металлической ложечке оксида хрома(III) Сr 2 O 3 . И что же? Нет пламени, нет дыма, а горка постепенно уменьшается в размерах. Через некоторое время от нее остается только щепотка неизрасходованного зеленого порошка – катализатора Сr 2 О 3 .

Окисление уротропина (СН 2) 6 N 4 (гексаметилентетрамина) – основы твердого спирта – в присутствии катализатора Сr 2 O 3 идет по реакции:

(СН 2) 6 N 4 + 9O 2 = 6СO 2 + 2N 2 + 6Н 2 О,

где все продукты – диоксид углерода СО 2 , азот N 2 и пары воды Н 2 O – газообразны, бесцветны и не имеют запаха. Заметить их исчезновение невозможно.

Ацетон и медная проволока

Можно показать еще один опыт с таинственным исчезновением вещества, который на первый взгляд кажется просто колдовством. Готовят медную проволоку толщиной 0,8–1,0 мм: очищают ее наждачной бумагой и сворачивают в кольцо диаметром 3–4 см. Отгибают отрезок проволоки длиной 10–15 см, который будет служить ручкой, а чтобы держать ее было не горячо, на конец этого отрезка надевают кусок карандаша, из которого заранее удален грифель.

Затем наливают в стакан 10–15 мл ацетона (СН 3) 2 СО (не забывайте: ацетон огнеопасен!).

Вдали от стакана с ацетоном нагревают кольцо из медной проволоки, держа ее за ручку, а потом быстро опускают его в стакан с ацетоном так, чтобы кольцо не касалось поверхности жидкости и находилось от нее в 5–10 мм (рис. 2). Проволока раскалится и будет светиться до тех пор, пока не израсходуется весь ацетон. Но ни пламени, ни дыма не будет! Чтобы опыт был еще эффектнее, в комнате гасят свет.

Статья подготовлена при поддержке компании «Пластика ОКОН». При ремонте квартиры не стоит забывать об остеклении балкона. Компания «Пластика ОКОН» занимается производством пластиковых окон с 2002 года. На сайте, расположенном по адресу plastika-okon.ru , вы сможете, не вставая со своего кресла, заказать остекление балкона или лоджии по выгодной цене. Компания «Пластика ОКОН» имеет развитую логистическую базу, которая позволяет ей, производить доставку и установку в кратчайшие сроки.

Рис. 2.
Исчезновение ацетона

На поверхности меди, которая служит катализатором и ускоряет реакцию, протекает окисление паров ацетона до уксусной кислоты СН 3 СООН и уксусного альдегида СН 3 СНО:

2(СН 3) 2 СО + О 2 = СН 3 СООН + 2СН 3 СНО,

с выделением большого количества теплоты, поэтому проволока раскаляется докрасна. Пары обоих продуктов реакции бесцветны, их выдает только запах.

«Сухая кислота»

Если в колбу положить кусочек «сухого льда» – твердого диоксида углерода – и закрыть ее пробкой с газоотводной трубкой, а конец этой трубки опустить в пробирку с водой, куда заранее добавили синий лакмус, то вскоре произойдет маленькое чудо.

Колбу слегка подогрейте. Очень скоро синий лакмус в пробирке покраснеет. Это значит, что диоксид углерода – кислотный оксид, при его реакции с водой получается угольная кислота, которая подвергается протолизу, и среда становится кислотной:

Н 2 СО 3 + Н 2 О НСО 3 – + Н 3 О + .

Волшебное яйцо

Как очистить куриное яйцо, не разбивая скорлупы? Если опустить его в разбавленную соляную или азотную кислоту, то скорлупа полностью растворится и останутся белок и желток, окруженные тонкой пленкой.

Этот опыт можно продемонстрировать весьма эффектным способом. Надо взять колбу или стеклянную бутылку с широкой горловиной, налить в нее на 3/4 объема разбавленную соляную или азотную кислоту, положить на горловину колбы сырое яйцо, а потом осторожно подогреть содержимое колбы. Когда кислота начнет испаряться, будет происходить растворение скорлупы, и через недолгое время яйцо в эластичной пленке проскользнет внутрь сосуда с кислотой (хотя яйцо больше в сечении, чем горловина колбы).

Химическое растворение скорлупы яйца, главным компонентом которой является карбонат кальция, отвечает уравнению реакции.

Такая сложная, но интересная наука, как химия, всегда вызывает у школьников неоднозначную реакцию. Ребятам интересны опыты, в результате которых получаются вещества ярких цветов, выделяются газы или выпадают осадки. А вот сложные уравнения химических процессов писать любят лишь единицы из них.

Значимость занимательных опытов

По современным федеральным стандартам в общеобразовательных школах введена Такой предмет программы, как химия, также не остался без внимания.

В рамках изучения сложных превращений веществ и решения практических задач юный химик на практике оттачивает свои умения и навыки. Именно в ходе необычных опытов учитель формирует у своих воспитанников интерес к предмету. Но на обычных уроках педагогу трудно найти достаточное количество свободного времени для нестандартных экспериментов, а проводить для детей просто некогда.

Чтобы исправить это, были придуманы дополнительные элективные и факультативные курсы. Кстати, многие ребята, которые в 8-9 классах увлекаются химией, в будущем становятся врачами, фармацевтами, учеными, ведь на таких занятиях юный химик получает возможность самостоятельно проводить эксперименты и делать по ним выводы.

Какие курсы связаны с занимательными химическими опытами?

В былые времена химия для детей была доступна только с 8-го класса. Никаких специальных курсов или внеурочных занятий химической направленности детям не предлагалось. По сути, работа с одаренными детьми по химии просто отсутствовала, что негативно отражалось и на отношении школьников к данной дисциплине. Ребята боялись и не понимали сложных химических реакций, допускали ошибки в написании ионных уравнений.

В связи с реформированием современной системы образования ситуация изменилась. Теперь в образовательных учреждениях предлагаются и в младших классах. Ребята с удовольствием проделывают те задания, которые им предлагает учитель, учатся делать выводы.

Факультативные курсы, связанные с химией, помогают ученикам старших классов получить навыки работы с лабораторным оборудованием, а придуманные для младших школьников содержат яркие, показательные химические опыты. Например, дети изучают свойства молока, знакомятся с теми веществами, которые получаются при его скисании.

Опыты, связанные с водой

Занимательная химия для детей интересна, когда в ходе опыта они видят необычный результат: выделение газа, яркий цвет, необычный осадок. Такое вещество, как вода, считается идеальным для проведения разнообразных занимательных химических опытов для школьников.

Например, химия для детей 7 лет может начинаться со знакомства с ее свойствами. Учитель рассказывает детям о том, что большая часть нашей планеты покрыта водой. Педагог сообщает воспитанникам и о том, что в арбузе ее более 90 процентов, а в человеке - около 65-70 %. Рассказав школьникам о том, как важна вода для человека, можно предложить им некоторые интересные эксперименты. При этом стоит подчеркнуть «волшебность» воды, чтобы заинтриговать школьников.

Кстати, в этом случае стандартный набор химии для детей не предполагает какого-то дорогостоящего оборудования - вполне можно ограничиться доступными приборами и материалами.

Опыт «Ледяная игла»

Приведем пример такого несложного и тоже время интересного эксперимента с водой. Это сооружение ледяной скульптуры - "иглы". Для эксперимента потребуется:

  • вода;
  • поваренная соль;
  • кубики льда.

Продолжительность эксперимента - 2 часа, поэтому на обычном уроке подобный эксперимент не провести. Для начала нужно в форму для льда залить воду, поставить в морозильную камеру. Через 1-2 часа, после того как вода превратится в лед, занимательная химия может продолжаться. Для опыта потребуется 40-50 готовых кубиков льда.

Вначале дети должны разложить на столе 18 кубиков в виде квадрата, оставив в центре свободное место. Далее их, предварительно посыпая поваренной солью, аккуратно прикладывают друг к другу, склеивая таким образом между собой.

Постепенно соединяются все кубики, и в итоге получается толстая и длинная «игла» изо льда. Чтобы сделать ее, достаточно 2 чайных ложек поваренной соли и 50 небольших кусочков льда.

Можно, подкрасив воду, сделать ледяные скульптуры разноцветными. А в результате такого несложного опыта химия для детей 9 лет становится понятной и увлекательной наукой. Можно поэкспериментировать, склеив кубики льда в виде пирамидки или ромба.

Эксперимент «Торнадо»

Данный опыт не потребует специальных материалов, реактивов и инструментов. Сделать его ребята смогут за 10-15 минут. Для эксперимента запасемся:

  • пластиковой прозрачной бутылкой с крышкой;
  • водой;
  • средством для мытья посуды;
  • блестками.

Бутылку нужно наполнить на 2/3 обычной водой. Затем добавляем в нее 1-2 капли средства для мытья посуды. Спустя 5-10 секунд в бутылку насыпаем пару щепоток блесток. Плотно закручиваем крышку, переворачиваем бутылку дном вверх, держа за горлышко, и крутим по часовой стрелке. Затем останавливаем и смотрим на получившийся вихрь. До того момента, как "торнадо" заработает, придется прокрутить бутылку 3-4 раза.

Почему возникает "торнадо" в обычной бутылке?

При совершении ребенком круговых движений возникает вихрь, сходный с торнадо. Вращение воды вокруг центра происходит благодаря действию центробежной силы. Учитель рассказывает детям о том, насколько страшны торнадо в природе.

Подобный опыт абсолютно безопасен, но после него химия для детей становится по-настоящему сказочной наукой. Для того чтобы эксперимент был более ярким, можно использовать красящее вещество, например, перманганат калия (марганцовку).

Эксперимент «Мыльные пузыри»

Хотите рассказать детям, что такое занимательная химия? Программы для детей не позволяют учителю уделять на уроках должное внимание опытам, на это просто нет времени. Значит, займемся этим факультативно.

Ученикам младших классов данный эксперимент принесет массу положительных эмоций, а сделать его можно за несколько минут. Нам потребуется:

  • жидкое мыло;
  • баночка;
  • вода;
  • тонкая проволока.

В баночке смешиваем одну часть жидкого мыла с шестью частями воды. Загибаем конец небольшого отрезка проволоки в виде кольца, Опускаем его в мыльную смесь, аккуратно вытаскиваем и выдуваем из формы красивый мыльный пузырь собственного изготовления.

Для данного эксперимента подходит только проволока, не имеющая нейлонового слоя. Иначе выдуть мыльные пузыри дети не смогут.

Для того чтобы ребятам было интереснее, можно добавить в мыльный раствор пищевой краситель. Можно устроить мыльные соревнования между школьниками, тогда химия для детей станет настоящим праздником. Учитель таким образом знакомит ребят с понятием растворов, растворимости и поясняет причины появления пузырей.

Занимательный опыт «Вода из растений»

Для начала педагог поясняет, насколько важна вода для клеток в живых организмах. Именно с помощью нее происходит транспортировка питательных веществ. Учитель отмечает, что в случае недостаточного количества воды в организме все живое погибает.

Для эксперимента потребуется:

  • спиртовка;
  • пробирки;
  • зеленые листочки;
  • держатель для пробирки;
  • сульфат меди (2);
  • химический стакан.

Данный эксперимент потребует 1,5-2 часа, но в результате химия для детей будет проявлением чуда, символом волшебства.

Зеленые листочки помещают в пробирку, закрепляют ее в держателе. В пламени спиртовки 2-3 раза нужно обогреть всю пробирку, а затем это делают только с той частью, где находятся зеленые листья.

Стакан следует разместить так, чтобы газообразные вещества, выделяющиеся в пробирке, попадали в него. Как только нагревание будет завершено, к капле полученной внутри стакана жидкости, добавляем крупинки белого безводного сульфата меди. Постепенно белый цвет исчезает, и сульфат меди становится голубого либо синего цвета.

Данный опыт приводит детей в полный восторг, ведь на их глазах меняется окраска веществ. В заключение опыта преподаватель рассказывает детям о таком свойстве, как гигроскопичность. Именно благодаря своей способности впитывать водяной пар (влагу), белый сульфат меди меняет свой цвет на синюю окраску.

Эксперимент «Волшебная палочка»

Данный эксперимент подходит для вводного занятия элективного курса по химии. Предварительно из нужно сделать заготовку в форме звезды и пропитать ее в растворе фенолфталеина (индикатора).

В ходе самого эксперимента прикрепленная к "волшебной палочке" звезда сначала погружается в раствор щелочи (к примеру, в раствор гидроксида натрия). Дети видят, как за считанные секунды у нее меняется окраска и появляется яркий малиновый цвет. Далее окрашенную форму помещают в раствор кислоты (для эксперимента оптимальным будет применение раствора соляной кислоты), и малиновая окраска пропадает - звездочка снова становится бесцветной.

Если опыт проводят для малышей, в ходе эксперимента учитель рассказывает «химическую сказку». Например, героем сказки может стать любознательный мышонок, который хотел узнать, почему в волшебной стране так много ярких цветов. Для учеников 8-9 классов педагог вводит понятие «индикатор» и отмечает, какими индикаторами можно определить кислотную среду, а какие вещества нужны для определения щелочной среды растворов.

Опыт «Джин из бутылки»

Данный эксперимент демонстрирует сам педагог, пользуясь специальным вытяжным шкафом. Опыт базируется на специфических свойствах концентрированной азотной кислоты. В отличие от многих кислот, концентрированная азотная способна вступать в химическое взаимодействие с металлами, расположенными в после водорода (за исключением платины, золота).

В пробирку нужно налить ее и добавить туда же кусочек медной проволоки. Под вытяжкой пробирка обогревается, и дети наблюдают появление паров «рыжего джина».

Для учеников 8-9 классов педагог пишет уравнение химической реакции, выделяет признаки ее протекания (изменение окраски, появление газа). Данный опыт не подходит для демонстрации вне стен школьного химического кабинета. По правилам техники безопасности, он предполагает применение так как пары оксида азота («бурого газа») представляют для детей опасность.

Домашние опыты

Для того чтобы подогреть интерес у школьников к химии, можно предложить домашний эксперимент. Например, провести опыт по выращиванию кристаллов поваренной соли.

Ребенок должен приготовить насыщенный раствор поваренной соли. Затем в него поместить тонкую веточку, и, по мере испарения из раствора воды, на веточке будут «расти» кристаллы поваренной соли.

Банку с раствором нельзя встряхивать или поворачивать. А когда через 2 недели кристаллы вырастут, палочку нужно очень осторожно вынуть из раствора и обсушить. А затем при желании можно покрыть изделие бесцветным лаком.

Заключение

В школьной программе нет более интересного предмета, чем химия. Но для того чтобы дети не боялись этой сложной науки, учитель должен уделять в своей работе достаточное времени занимательным опытам и необычным экспериментам.

Именно практически навыки, которые формируются в ходе такой работы, и помогут стимулировать интерес к предмету. А в младших классах занимательные опыты рассматриваются по ФГОСам как самостоятельная проектная и исследовательская деятельность.

Вечер занимательной химии

При подготовке химического вечера требуется тщательная подготовка учителя к проведению опытов.

Проведению вечера должна предшествовать продолжительная, тщательная работа с учащимися, при этом одному ученику не следует поручать больше двух опытов.

Цель проведения химического вечера – повторить полученные знания, углубить интерес учащихся к химии и привить им практические навыки в разработке и осуществлении опытов.

Описание основных этапов проведения вечера занимательной химии

I. Вступительное слово учителя на тему “Роль химии в жизни общества”.

II. Занимательные опыты по химии.

Ведущий (роль ведущего выполняет один из учеников 10-11-го класса):

Сегодня мы проводим вечер занимательной химии. Ваша задача – внимательно следить за химическими опытами и постараться их объяснить. И так, мы начинаем! Опыт № 1: “Вулкан”.

Опыт № 1. Описание:

Участник вечера высыпает на асбестовою сетку растертый в порошок дихромат аммония (в виде горки), на верхнюю часть горки кладет несколько головок спичек и поджигает их лучинкой.

Примечание: вулкан будет выглядеть еще более эффектно, если к дихромату аммония добавить немного порошкообразного магния. Компоненты смеси сразу перемешать, т.к. магний сгорает энергично и находясь в одном месте вызывает разбрасывание раскаленных частиц.

Сущность опыта – экзотермическое разложение дихромата аммония при местном нагревании.

Нет дыма без огня – гласит старая русская пословица. Оказывается, с помощью химии можно получить дым без огня. И так, внимание!

Опыт № 2. Описание:

Участник вечера берет две стеклянные палочки, на которые накручено понемногу ваты, и смачивает их: одну в концентрированной азотной (или соляной) кислоте, другую в водном 25%-ом растворе аммиака. Палочки следует поднести друг к другу. От палочек поднимается белый дым.

Сущность опыта – образование азотнокислого (хлористого) аммония.

А теперь представляем вашему внимаю следующий опыт – “Стреляющая бумага”.

Опыт № 3. Описание:

Участник вечера выносит на листе фанеры листочки бумаги, дотрагивается до них стеклянной палочкой. При прикосновении к каждому листочку раздается выстрел.

Примечание: заранее нарезаются узкие полоски фильтровальной бумаги и смачиваются в растворе йода в нашатырном спирте. После этого полоски раскладывают на листе фанеры и оставляют сохнуть до вечера. Выстрел получается тем сильнее, чем лучше пропитана бумага раствором и чем концентрированнее был раствор йодистого азота.

Сущность опыта – экзотермическое разложение непрочного соединения NI3*NH3.

У меня есть яйцо. Кто из вас, ребята, очистит его, не разбивая скорлупы?

Опыт № 4. Описание:

Участник вечера помещает яйцо в кристаллизатор с раствором соляной (или уксусной) кислоты. Через некоторое время вытаскивает яйцо, покрытое только подскорлуповой оболочкой.

Сущность опыта – в состав скорлупы в основном входит карбонат кальция. В соляной (уксусной) кислоте он переходит в растворимый хлорид кальция (ацетат кальция).

Ребята, у меня в руках фигурка человека из цинка. Давайте оденем его.

Опыт № 5. Описание:

Участник вечера опускает фигурку в 10%-й раствор ацетата свинца. Фигурка покрывается пушистым слоем кристаллов свинца, напоминающим меховую одежду.

Сущность опыта – более активный металл вытисняет из растворов солей менее активный металл.

Ребята, а можно ли сжечь сахар без помощи огня? Давайте проверим!

Опыт № 6. Описание:

Участник вечера высыпает в стакан, поставленный на блюдце, сахарную пудру (30 г), туда же вливает 26 мл концентрированной серной кислоты и перемешивает смесь стеклянной палочкой. Через 1-1,5 минуты смесь в стакане темнеет, вспучивается и в виде рыхлой массы поднимается над краями стакана.

Сущность опыта – серная кислота отнимает от молекул сахара воду, окисляет углерод в углекислый газ, одновременно образуется сернистый газ. Выделяющиеся газы выталкивают массу из стакана.

Какие вы знаете способы добывания огня?

Из зала приводят примеры.

Попробуем обойтись без этих средств.

Опыт № 7. Описание:

Участник вечера насыпает на кусок жести (или кафельную плитку) растертый в порошок перманганат калия (6 г) и капает на него из пипетки глицерин. Через некоторое время появляется огонь.

Сущность опыта – в результате реакции выделяется атомарный кислород и глицерин воспламеняется.

Другой участник вечера:

Я тоже получу огонь без спичек, только другим способом.

Опыт № 8. Описание:

Участник вечера насыпает на кирпич небольшое количество кристаллов перманганата калия и капает на него концентрированную серную кислоту. Вокруг этой смеси он складывает тонкие щепки в виде костра, но так, чтобы они не касались смеси. Затем смачивает спиртом небольшой кусочек ваты и держа руку над костром выдавливает из ваты несколько капель спирта так, чтобы они попали на смесь. Костер моментально загорается.

Сущность опыта – происходит энергичное окисление спирта кислородом, который выделяется при взаимодействии серной кислоты с перманганатом калия. Выделяющееся при этой реакции тепло зажигает костер.

А теперь удивительные огни!

Опыт № 9. Описание:

Участник вечера помещает в фарфоровые чашки ватные тампоны, смоченные этиловым спиртом. На поверхность тампонов он насыпает следующие соли: хлорида натрия, нитрата стронция (или нитрата лития), хлорида калия, нитрата бария (или борной кислоты). На кусочке стекла участник готовит смесь (кашицу) из перманганата калия и концентрированной серной кислоты. Он берет стеклянной палочкой немного этой массы и касается поверхности тампонов. Тампоны вспыхивают и горят разными цветами: желты, красным, фиолетовым, зеленым.

Сущность опыта – ионы щелочных и щелочноземельных металлов окрашивают пламя в различные цвета.

Дорогие ребята, я так устал и проголодался, что прошу вас разрешить мне немного покушать.

Опыт № 10. Описание:

Ведущий обращается к участнику вечера:

Дай мне, пожалуйста, чай и сухарь.

Участник вечера дает ведущему стакан с чаем и белый сухарь.

Ведущий смачивает сухарь в чае – сухарь синеет.

Ведущий :

Безобразие, ты же меня чуть не отравил!

Участник вечера:

Простите мен, я, наверное, перепутал стаканы.

Сущность опыта – в стакане находился раствор йода. Крахмал, находящийся в сухаре, посинел.

Ребята, я получи письмо, но в конверте оказался чистый лист бумаги. Кто сможет помочь мне узнать, в чем тут дело?

Опыт № 11. Описание:

Учащийся из зала (заранее подготовленный) прикасается тлеющей лучинкой к карандашной метке на листе бумаги. Бумага по линии рисунка медленно сгорает и огонек, передвигаясь по контуру изображения, обрисовывает его (рисунок может быть произвольным).

Сущность опыта – бумага сгорает за счет кислорода селитры, выкристаллизовавшейся в ее толще.

Примечание: на лист бумаги заранее наносится рисунок крепким раствором калиевой селитры. Его необходимо наносить одной непрерывной линией без пересечений. От контура рисунка тем же раствором следует провести к краю бумаги линию, отметив ее конец карандашом. Когда бумага высохнет, рисунок станет незаметным.

Ну а теперь, ребята, переходим ко второй части нашего вечера. Химические игры!

III. Командные игры.

Участникам вечера предлагают разбиться на группы. Каждая группа принимает участие в предложенной ей игре.

Игра № 1. Химическое лото.

На карточках, разграфленных как в обычном лото, пишутся формулы химических веществ, а на картонных квадратиках – названия этих веществ. Участникам группы раздают карточки, а один из них вытаскивает квадратики и называет вещества. Выигрывает тот участник группы, который первым закроет все поля карточки.

Игра № 2. Химическая викторина.

Между спинками двух стульев натягивается веревка. К ней на ниточках привязываются конфеты, к которым прикреплены бумажки с вопросами. Участники группы поочередно ножницами срезают конфеты. Игрок становится владельцем конфеты после того, как отвечает на приложенный к ней вопрос.

Участники группы образовывают круг. В руках у них химические знаки и цифры. Двое из игроков находятся в середине круга. По команде они составить химическую формулу веществ из знаков и цифр, которые держат остальные игроки. Побеждает тот участник, который быстрее составит формулу.

Участники группы делятся на две команды. Им раздаются карточки с химическими формулами и цифрами. Они должны составить химическое уравнение. Побеждает та команда, которая составит уравнение первой.

Вечер заканчивается вручением призов наиболее активным участникам.

Родители маленьких непосед могут удивить их опытами, которые можно провести в домашних условиях. Легкие, но в то же время удивительные и вызывающие восторг, они способны не только разнообразить досуг ребенка, но и позволят взглянуть на привычные вещи совсем другими глазами. И открыть для себя их свойства, функции, назначение.

Юные естествоиспытатели

Эксперименты дома, прекрасно подходящие для детей до 10 лет — лучший способ помочь ребенку накопить практический опыт, который пригодится ему в будущем.

Техника безопасности при проведении экспериментов

Для того, чтобы проведение познавательных экспериментов не было омрачено неприятностями и травмами, достаточно запомнить несколько простых, но важных правил.


Техника безопасности — на первом месте
  1. Перед тем, как начать работу с химическими веществами, рабочую поверхность нужно защитить, застелив пленкой или бумагой. Это избавит родителей от ненужной уборки и позволит сохранить внешний вид и функциональность мебели.
  2. В процессе работы не нужно слишком близко подходить к реагентам, наклоняясь над ними. Особенно если в планах – химические эксперименты для маленьких детей, в которых участвую небезопасные вещества. Мера позволит защитить слизистые рта и глаза от раздражения и ожогов.
  3. По возможности нужно использовать защитные приспособления: перчатки, очки. Они должны подходить ребенку по размеру и не мешать ему во время проведения эксперимента.

Простые эксперименты для самых маленьких

Развивающие опыты и эксперименты для самых маленьких детей (или для детей до 10 лет), как правило просты и не требуют от родителей ни особых умений, ни редкого или дорогостоящего оборудования. Зато радость открытия и чуда, которое так легко сделать своими руками, останется с ним надолго.

Например, в неописуемом восторге дети будут от самой настоящей семицветной радуги, которую они смогут вызвать сами при помощи обычного зеркала, емкости с водой и листа белой бумаги.


Опыт с радугой в бутылке

Для начала на дно небольшого таза или ванны кладется зеркало. Затем, он наполняется водой; а на зеркало направляется свет фонаря. После того, как свет отразится и пройдет через воду, он разложится на составляющие его цвета, став той самой радугой, которую можно будет увидеть на листе белой бумаги.

Еще один, очень простой и красивый опыт можно провести при помощи обычной воды, проволоки и соли.

Чтобы приступить к эксперименту, нужно приготовить перенасыщенный раствор соли. Рассчитать нужную концентрацию вещества довольно просто: при необходимом количестве соли в воде она перестает растворяться при добавлении очередной порции. Очень хорошо использовать для этой цели теплую дистиллированную воду. Для того, чтобы эксперимент прошел удачнее, готовый раствор также можно перелить в другую емкость – это удалит грязь и сделает его чище.


Опыт «Соль на проволоке»

Когда все будет готово, в раствор опускается небольшой кусочек медной проволоки с петлей на конце. Сама емкость убирается в теплое место и оставляется там на определенное время. По мере того, как раствор начнет остывать, растворимость соли понизится, и она начнет оседать на проволоке в виде красивых кристаллов. Заметить первые результаты можно будет уже через несколько дней. Кстати, использовать в эксперименте можно не только обычную, прямую проволоку: скручивая из нее причудливые фигурки, можно выращивать кристаллы самого разного размера и формы. Кстати, этот эксперимент подарит ребенку отличную идею новогодних игрушек в виде самых настоящих ледяных снежинок – достаточно просто найти гибкую проволоку и сформировать из нее красивую симметричную снежнику.

Неизгладимое впечатление на ребенка смогут произвести также и невидимые чернила. Приготовить их очень просто: достаточно просто взять чашку воды, спички, вату, половину лимона. И лист, на котором можно будет написать текст.


Невидимые чернила можно купить готовые

Для начала в чашке нужно смешать равное количество лимонного сока и воды. Затем, на зубочистку или тонкую спичку наматывается немного ваты. Получившийся «карандаш» обмакивается в смесь в полученную жидкость; затем им можно написать на листе бумаги любой текст.

Несмотря на то, что вначале слова на бумаге будут абсолютно невидимы, проявить их будет очень легко. Для этого лист с уже подсохшими чернилами нужно поднести к лампе. На разогретом листе бумаги сразу проявятся написанные слова.

Кто из детей не любит воздушные шары?

Оказывается, даже надуть обычный шар можно весьма оригинальным способом. Для этого нужно растворить в бутылке воды одну ложку пищевой соды. И в другой чашке смешиваются сок одного лимона и три столовых ложки уксуса. После, содержимое чашки вводится в бутылку (для удобства можно использовать небольшую воронку). Шарик нужно надеть на горлышко бутылки максимально быстро, пока химическая реакция не окончится. За это время углекислый газ сможет быстро надуть шарик под давлением. Для того чтобы шарик не соскочил с горлышка бутылки, его можно будет закрепить при помощи изоленты или скотча.


Опыт «Надуть шарик»

Очень интересно и необычно выглядит цветное молоко, цвета которого будут двигаться, причудливо смешиваясь между собой. Для этого эксперимента нужно налить в тарелку немного цельного молока и добавить в него несколько капель пищевого красителя. Отдельные области жидкости окрасятся в разные цвета, но при этом пятна будут оставаться неподвижными. Как же привести их в движение? Очень просто. Достаточно взять небольшую ватную палочку и, предварительно обмакнув в моющее средство, поднести к поверхности цветного молока. Вступив в реакцию с молекулами молочного жира, молекулы моющего средства заставят его двигаться.


Опыт «Рисунки на молоке»

Важно! Для этого эксперимента не подойдет обезжиренное молоко. Можно использовать только цельное!

Наверняка всем детям доводилось наблюдать дома и на улице за забавными пузырьками воздуха в минеральной или сладкой воде. Но достаточно ли они сильны для того, чтобы поднять на поверхность зерно кукурузы или изюма? Оказывается, да! Чтобы проверить это достаточно налить в бутылку любую газированную воду, а после – бросить в нее немного кукурузы или изюма. Ребенок сам убедится в том, как легко под действием пузырьков воздуха и кукуруза, и изюм начнут подниматься вверх, а после – достигнув поверхности жидкости – снова опускаться вниз.

Эксперименты для детей более старшего возраста

Детям более старшего возраста (от 10 лет) можно будет предложить уже более сложные химические эксперименты, требующие большего количества компонентов. Эти эксперименты для более старших детей немного сложнее, но дети уже могут принимать в них участие.

Для соблюдения техники безопасности дети до 10 лет должны проводить эксперименты под строгим контролем взрослых, в основном в роли зрителя. Дети старше 10 лет могут принимать в опытах более активное участие.

Примером такого эксперимента может быть создание лавовой лампы. Наверняка о таком чуде мечтают многие дети. Но, куда приятнее сделать ее своими руками, используя для этого простые компоненты, которые наверняка найдутся в каждом доме.


Опыт «Лавовая лампа»

Основой лавовой лампы станет небольшая банка или самый обычный стакан. Кроме этого для опыта понадобятся растительное масло, вода, соль и немного пищевого красителя.

Банка, или другая емкость, используемая в качестве основы лампы, наполняется водой на две трети и на треть маслом. Поскольку масло значительно легче воды по весу, она останется на ее поверхности, не смешиваясь с ней. Затем, в банку добавляется немного пищевого красителя – это придаст лавовой лампе цвет и сделает эксперимент красивее и зрелищнее. И после этого в полученную смесь кладется чайная ложка соли. Для чего? Соль заставляет масло опускаться на дно в виде пузырьков, а затем, растворяясь, выталкивает их вверх.

Следующий химический эксперимент поможет сделать увлекательным интересным такой школьный предмет, как географию.


Изготовление вулкана своими руками

Ведь изучать вулканы куда интереснее тогда, когда рядом есть не просто сухой книжный текст, но целая модель! Особенно, если сделать ее легко дома своими руками, пользуясь доступными подручными средствами: прекрасно подойдет песок, пищевой краситель, сода, уксус и бутылка.

Для начала на подносе устанавливается бутылка – она станет основой будущего вулкана. Вокруг него нужно слепить небольшой конус из песка, глины или пластилина – так гора приобретет более законченный и правдоподобный вид. Теперь нужно вызвать извержение вулкана: в бутылку заливается немного теплой воды, затем – немного соды и пищевого красителя (красного или оранжевого цвета). Завершающим штрихом станет четверть стакана уксуса. Вступив в реакцию с содой, уксус начнет активно выталкивать наружу содержимое бутылки. Этим и объясняется интересный эффект извержения, который можно наблюдать вместе с ребенком.


Вулкан можно сделать из зубной пасты

Может ли бумага гореть, не сгорая?

Оказывается, да. И эксперимент с несгораемыми деньгами легко докажет это. Для этого десятирублевая денежная купюра погружается в 50% раствор спирта (вода смешивается со спиртом в пропорции 1 к 1, к ней добавляется щепотка соли). После того, как купюра как следует пропитается, лишняя жидкость удаляется с нее, а сама купюра поджигается. Вспыхнув, она начнет гореть, но при этом совершенно не сгорит. Объяснить этот опыт довольно просто. Температура, при которой горит спирт недостаточно высока для того, чтобы испарить воду. Благодаря этому даже после того, как вещество догорит полностью, деньги останутся слегка влажными, но абсолютно целыми.


Опыты со льдом всегда пользуются успехом

Юным любителям природы можно предложить прорастить дома семена не используя при этом почву. Как это делается?

В яичную скорлупу кладется немного ваты; она активно смачивается водой, а затем в нее кладется немного семян (например, люцерны). Буквально через несколько дней можно будет заметить первые ростки. Таким образом, для прорастания семян далеко не всегда бывает нужна почва – достаточно лишь воды.

А следующий эксперимент, который легко провести дома для детей наверняка придется по душе девочкам. Ведь кто из них не любит цветы?


Окрашенный цветок можно подарить маме

Особенно самых необычных, ярких оттенков! Благодаря простому опыту прямо перед изумленными детьми простые и привычные всем цветы могут окраситься в самый неожиданный цвет. Тем более, что сделать это предельно просто: достаточно поставить срезанный цветок в воду с добавленным в нее пищевым красителем. Поднимаясь по стеблю к лепесткам, химические красители окрасят их в нужные вам цвета. Чтобы вода лучше впитывалась, срез лучше делать по диагонали – так он будет иметь максимальную площадь. Для того, чтобы цвет проявился ярче, желательно использовать светлые, или белые цветы. Еще более интересный и фантастических эффект получится если перед началом опыта стебель будет расщеплен на несколько частей и каждая из них будет погружена в свой стакан с окрашенной водой.

Лепестки окрасятся в сразу во все цвета самым неожиданным и причудливым образом. Что несомненно произведем неизгладимое впечатление на ребенка!


Опыт «Цветная пена»

Всем известно, что под действием силы тяжести вода может стекать только вниз. Но, можно ли сделать так, чтобы она поднималась вверх по салфетке? Для проведения этого опыта обычный стакан наполняется водой примерно на треть. Салфетка складывается несколько раз так, чтобы получится неширокий прямоугольник. После этого салфетка снова разворачивается; немного отступив от нижнего края на ней нужно начертить линию из цветных точек достаточно большого диаметра. Салфетка погружается в воду так, чтобы она примерно на полтора сантиметра ее окрашенная часть оказалась в ней. Соприкоснувшись с салфеткой, вода начнет постепенно подниматься вверх, окрашивая ее разноцветными полосками. Этот необычный эффект происходит благодаря тому, что имея пористую структуру, волокна салфетки легко пропускают воду вверх.


Опыт с водой и салфеткой

Для проведения следующего опыта понадобятся небольшая промокашка, формочки для печенья разной формы, немного желатин, прозрачный пакет, стакан и вода.


Желатиновая вода не смешивается

Желатин растворяется в четверти стакана воды; он должен набухнуть и увеличиться в объеме. Затем, вещество растворяется на водяной бане и доводится примерно до 50 градусов. получившуюся жидкость нужно тонким слоем распределить по целлофановому пакету. При помощи формочек для печенья из желатина вырезаются фигурки различной формы. После этого их нужно уложить на промокашку или салфетку, а после – подышать на них. Теплое дыхание заставит желатин увеличиваться в объеме, благодаря чему фигурки начнут изгибаться с одной из сторон.

Опыты, проведенные дома с детьми, очень легко разнообразить.


Желатиновые фигурки из формочек

Зимой можно попробовать несколько видоизменить эксперимент, вынеся желатиновые фигурки на балкон или оставив на некоторое время в морозильной камере. Когда под действием холода желатин застынет, на нем отчетливо проступят узоры ледяных кристаллов.

Заключение


Описание других опытов

Восторг и море положительных эмоций – вот что подарит экспериментирование для любопытных детей проведенное вместе со взрослыми. А родители позволят себе разделить с юными исследователями радость первых открытий. Ведь сколько бы лет не было человеку – возможность хотя бы ненадолго вернуться в детство по-настоящему бесценна.

Эксперименты в домашних условиях, о которых мы сейчас поговорим, очень простые, но чрезвычайно занимательные. Если ваш ребенок ещё только знакомится с природой разных явлений и процессов, такие опыты будут выглядеть для него настоящим волшебством. А ведь ни для кого не секрет, что лучше всего преподносить детям сложную информацию именно в игровой форме - это поможет закрепить материал и оставит яркие воспоминания, которые пригодятся в дальнейшем обучении.

Взрыв в тихой воде

Обсуждая возможные эксперименты в домашних условиях, в первую очередь мы расскажем о том, как сделать такой мини-взрыв. Вам понадобится большой сосуд, заполненный обычной водопроводной водой (к примеру, это может быть трехлитровый бутыль). Желательно, чтобы жидкость отстоялась в спокойном месте в течение 1-3 суток. После этого следует осторожно, не касаясь самого сосуда, капнуть в самую середину воды с высоты несколько капелек чернил. Они будут красиво расползаться в воде, как будто в замедленной съемке.

Воздушный шарик, который надувается сам

Это еще один интересный опыт, который можно провести, осуществляя в домашних условиях. В сам шарик требуется насыпать чайную ложечку обыкновенной пищевой соды. Далее вам нужно взять пустую пластиковую бутылку и залить в неё 4 столовые ложки уксуса. Шарик необходимо натянуть на её горлышко. В результате сода высыплется в уксус, произойдет реакция с выделением углекислого газа, и шарик надуется.

Вулкан

С помощью той же соды и уксуса можно сделать в своём доме настоящий вулкан! В качестве основы можно использовать даже пластиковый стаканчик. В «жерло» засыпают 2 столовые ложечки соды, заливают её четвертью стакана подогретой воды и добавляют немного пищевого красителя тёмного цвета. Затем останется лишь долить четверть стакана уксуса и наблюдать за «извержением».

«Цветная» магия

Эксперименты в домашних условиях, которые вы можете продемонстрировать своему ребенку, также включают в себя необычные изменения различными веществами их цвета. Ярким примером тому является реакция, происходящая при соединении йода и крахмала. Смешав коричневый йод и белоснежный крахмал, вы получите жидкость... ярко-синего оттенка!

Фейерверки

Какие ещё можно провести эксперименты в домашних условиях? Химия предоставляет огромное поле для деятельности в этом плане. К примеру, вы можете сделать яркие фейерверки прямо в комнате (но лучше во дворе). Немного марганцовки необходимо растолочь в мелкий порошок, а далее взять аналогичное количество древесного угля и тоже измельчить его. Тщательно перемешав уголь с марганцем, добавляем туда же железный порошок. Данную смесь пересыпают в металлический колпачок (подойдет и обычный наперсток) и держат его в пламени горелки. Как только состав накалится, вокруг начнет рассыпаться целый дождь красивых искр.

Содовая ракета

И, напоследок, вновь скажем про химические эксперименты в домашних условиях, где участвуют самые простые и доступные реактивы - уксус и гидрокарбонат натрия. В данном случае вам потребуется взять пластиковую кассету для плёнки, заполнить её пищевой содой, а далее - быстро влить 2 чайные ложечки уксуса. На следующем этапе вы закрываете самодельную ракету крышкой, ставите на землю вверх дном, отходите и наблюдаете за тем, как она взлетает.